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1. Понятие группы. Аддитивная и мультипликативная группы. 

Абелевы группы.

Определение 1 (Алгебраическая структура)  Алгебраическая структура — множество с 

определенными над ней операциями.

Обозначается как ⟨𝑀, ∘, ∗⟩, где:

• 𝑀  — множество

• ∘, ∗ — некоторые абстрактные операции над элементами 𝑀 :

Определение 2 (Группа)  Группа — алгебраическая структура ⟨G, ∗⟩ с определенными аксиомами:

1. Ассоциативность:

∀𝑎, 𝑏, 𝑐 ∈ 𝐺. 𝑎 ∗ (𝑏 ∗ 𝑐) = (𝑎 ∗ 𝑏) ∗ 𝑐

2. Наличие нейтрального элемента 𝑒:

∃𝑒 ∈ 𝐺. ∀𝑎 ∈ 𝐺. 𝑎 ∗ 𝑒 = 𝑒 ∗ 𝑎 = 𝑎

3. Наличие обратного элемента 𝑎−1:

∀𝑎 ∈ 𝐺. ∃𝑎−1 ∈ 𝐺. 𝑎 ∗ 𝑎−1 = 𝑎−1 ∗ 𝑎 = 𝑒

Определение 3 (Мультипликативная группа)  Мультипликативная группа – группа с операцией 

умножения: ⟨𝐺, ⋅⟩.

Пример.  Группа рациональных чисел по умножеию ⟨ℚ, ⋅⟩.

Определение 4 (Аддитивная группа)  Аддитивная группа – группа с операцией сложения: ⟨𝐺, +⟩.

Пример.  Группа целых чисел по сложению ⟨ℤ, +⟩.

Определение 5 (Абелева группа)  Абелева группа — группа, обладающая коммутативностью:

∀𝑎, 𝑏 ∈ 𝐺. 𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎

2. Понятие поля. Построение поля комплексных чисел.

Определение 6 (Поле)  Поле — алгебраическая структура ⟨𝐹 , +, ⋅⟩, для которой выполняются аксиомы:

1. Ассоциативность сложения:

∀𝑎, 𝑏, 𝑐 ∈ 𝐹 . 𝑎 + (𝑏 + 𝑐) = (𝑎 + 𝑏) + 𝑐

2. Наличие нейтрального элемента по сложению:

∃0 ∈ 𝐹. ∀𝑎 ∈ 𝐹. 𝑎 + 0 = 0 + 𝑎 = 𝑎

3. Наличие обратного элемента по сложению:

∀𝑎 ∈ 𝐹. ∃(−𝑎) ∈ 𝐹 . 𝑎 + (−𝑎) = (−𝑎) + 𝑎 = 0

4. Коммутативность сложения:

∀𝑎, 𝑏 ∈ 𝐹 . 𝑎 + 𝑏 = 𝑏 + 𝑎

5. Ассоциативность умножения:
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∀𝑎, 𝑏, 𝑐 ∈ 𝐹 . 𝑎 ⋅ (𝑏 ⋅ 𝑐) = (𝑎 ⋅ 𝑏) ⋅ 𝑐

6. Наличие нейтрального элемента по умножению:

∃1 ∈ 𝐹. ∀𝑎 ∈ 𝐹 ∖ {0}. 𝑎 ⋅ 1 = 1 ⋅ 𝑎 = 𝑎

7. Наличие обратного элемента по умножению:

∀𝑎 ∈ 𝐹 ∖ {0}. ∃𝑎−1 ∈ 𝐹. 𝑎 ⋅ 𝑎−1 = 𝑎−1 ⋅ 𝑎 = 1

8. Коммутативность умножения:

∀𝑎, 𝑏 ∈ 𝐹 . 𝑎 ⋅ 𝑏 = 𝑏 ⋅ 𝑎

9. Дистрибутивность умножения относительно сложения:

∀𝑎, 𝑏, 𝑐 ∈ 𝐹 . (𝑎 + 𝑏) ⋅ 𝑐 = (𝑎 ⋅ 𝑐) + (𝑏 ⋅ 𝑐)

Примечание

Заметим, что можно сократить определение поля.

Поле — структура ⟨𝐹 , +, ⋅⟩, обладающая аксиомами:

1. ⟨𝐹 , +⟩ — абелева аддитивная группа

2. ⟨𝐹 ∖ {0}, ⋅⟩ — абелева мультипликативная группа

3. Дистрибутивность ⋅ относительно +

Определение 7 (Построение поля комплексных чисел)  Возьмем декартово произведение 

действительных чисел ℝ2 и определим для него операции сложения и умножения следующим образом:

(𝑎, 𝑏) + (𝑐, 𝑑) =
def

(𝑎 + 𝑐, 𝑏 + 𝑑)

(𝑎, 𝑏) ⋅ (𝑐, 𝑑) =
def

(𝑎𝑐 − 𝑏𝑑, 𝑎𝑑 + 𝑏𝑐)

Назовем это полем комплексных чисел ℂ.

Теорема 8  Поле действительных чисел — поле.

Доказательство.  Для этого проверим все аксиомы поля. В целом все плюс-минус тривиально, кроме аксиом 

умножения: там надо аккуратно все посчитать. ⁠ □

3. Алгебраическая форма комплексного числа. Комплексное 

сопряжение, свойства.

Определение 9 (Представление дейстивтельного числа в комплексном поле) 

𝑥 ∈ ℝ =
def

(𝑥, 0) ∈ ℂ

Примечание

Из данного определения следует, что:

∀𝑥 ∈ ℝ : 𝑥 ∈ ℂ

Значит, ℝ ⊂ ℂ.
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Определение 10 (Мнимая единица) 

𝑖 =
def

(0, 1)

Свойство 11 

𝑖2 = −1

Доказательство.  𝑖2 = (0, 1) ⋅ (0, 1) = (0 ⋅ 0 − 1 ⋅ 1,  0 ⋅ 1 + 1 ⋅ 0) = (−1, 0) = −1 ⁠ □

Определение 12 (Алгебраическая форма комплексного числа)  Пусть 𝑎, 𝑏 ∈ ℝ. Алгебраическая форма 

комплексного числа 𝑧 ∈ ℂ:

𝑧 = 𝑎 + 𝑏𝑖

• 𝑎 называется действительной частью 𝑧. Обозначается как Re(𝑧).
• 𝑏 называется действительной частью 𝑧. Обозначается как Im(𝑧).

Предупреждение

На лекциях мы ввели понятие комплексного числа, просто определив 𝑖2 = −1 и далее пользуясь 

привычными алгебраическими операциями, воспринимая 𝑖 как за константу.

Так зачем же было вводить поле комплексных чисел через пару действительных чисел с особым 

определением операций? Ну, так надо, исходя из содержания билетов. Bakeeva moment.

Зато уже сейчас вполне очевидна геометрическая модель комплексного числа: это просто точка на 

плоскости ℝ2!

Определение 13 (Комплесно сопряженное число)  Для числа 𝑧 = 𝑎 + 𝑏𝑖, комплексно сопряженным 

называется число 𝑧 = 𝑎 − 𝑏𝑖

Свойство 14 (Частное комплексных чисел)  Используя сопряжение, можно делить два комплексных 

числа, умножив числитель и знаменатель на сопряженный знаменатель.

Пусть даны два числа:

• 𝑧1 = 𝑎 + 𝑏𝑖
• 𝑧2 = 𝑐 + 𝑑𝑖

Тогда их частное равно:

𝒛𝟏
𝒛𝟐

= 𝑧1𝑧2
𝑧2𝑧2

= (𝑎 + 𝑏𝑖)(𝑐 − 𝑑𝑖)
(𝑐 + 𝑑𝑖)(𝑐 − 𝑑𝑖)

= 𝑎𝑐 − 𝑎𝑑𝑖 + 𝑏𝑐𝑖 − 𝑏𝑑𝑖2

𝑐2 − 𝑐𝑑𝑖 + 𝑐𝑑𝑖 − 𝑑2𝑖
= 𝑎𝑐 + 𝑏𝑑 + (𝑎𝑑 − 𝑏𝑐)𝑖

𝑐2 + 𝑑2 = 𝒂𝒄 + 𝒃𝒅
𝒄𝟐 + 𝒅𝟐 + 𝒂𝒅 − 𝒃𝒄

𝒄𝟐 + 𝒅𝟐 𝒊

Свойство 15 (Арифметические свойства сопряжения) 

1. 𝑧1 + 𝑧2 = 𝑧1 + 𝑧2
2. 𝑧1 ⋅ 𝑧2 = 𝑧2 ⋅ 𝑧2
3. 𝑧1

𝑧2
 = 

𝑧1
𝑧2

Доказательство.  Пусть дано:

• 𝑧1 = 𝑎 + 𝑏𝑖
• 𝑧2 = 𝑐 + 𝑑𝑖
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1. По цепочке преобразований:

(𝑎 + 𝑏𝑖) + (𝑐 + 𝑑𝑖) = (𝑎 + 𝑐) + (𝑏 + 𝑑)𝑖 = (𝑎 + 𝑐) − (𝑏 + 𝑑)𝑖 = (𝑎 − 𝑏𝑖) + (𝑐 − 𝑑𝑖) = 𝑎 + 𝑏𝑖 + 𝑐 + 𝑑𝑖

2. С одной стороны имеем:

(𝑎 + 𝑏𝑖)(𝑐 + 𝑑𝑖) = 𝑎𝑐 + 𝑎𝑑𝑖 + 𝑏𝑐𝑖 + 𝑏𝑑𝑖2 = (𝑎𝑐 − 𝑏𝑑) + (𝑎𝑑 + 𝑏𝑐)𝑖 = (𝑎𝑐 − 𝑏𝑑) − (𝑎𝑑 + 𝑏𝑐)𝑖

С другой стороны:

𝑎 + 𝑏𝑖 ⋅ 𝑐 + 𝑑𝑖 = (𝑎 − 𝑏𝑖)(𝑐 − 𝑑𝑖) = 𝑎𝑐 − 𝑎𝑑𝑖 − 𝑏𝑐𝑖 + 𝑏𝑑𝑖2 = (𝑎𝑐 − 𝑏𝑑) − (𝑎𝑑 + 𝑏𝑐)𝑖

Следовательно, (𝑎 + 𝑏𝑖) + (𝑐 + 𝑑𝑖) = 𝑎 + 𝑏𝑖 ⋅ 𝑐 + 𝑑𝑖

3. Аналогично предыдущему пункту.

⁠ □

4. Геометрическая модель комплексных чисел, интерпретация 

сложения и сопряжения в этой модели.

Определение 16 (Геометрическая модель комплексных чисел)  Поле комплексных чисел можно 

изобразить на координатной плоскости ℝ2.

• Ось абсцисс — действительная часть

• Ось ординат — мнимая часть

Пример.  Изобразим числа (2 + 3𝑖), (−4 − 2𝑖) на комплексной плоскости:

−5 −4 −3 −2 −1 1 2 3 4 5 Re

−5

−4

−3

−2

−1

1

2

3

4

5
Im

0

2 + 3𝑖

−4 − 2𝑖

• Сложение в данной модели интерпретируется как сумма двух векторов.

• Операция сопряжения отражает точку относительно оси абсцисс.

5. Модуль комплексного числа, его свойства. Аргумент комплексного 

числа.

Определение 17 (Модуль комплексного числа)  Модулем комплексного чилса 𝑧 называется число

𝑟 = |𝑧| = √𝑎2 + 𝑏2

Нетрудно заметить, что геометрический смысл модуля комплексного числа — длина вектора ⃗𝑧.
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Свойство 18 (Арифметические свойства модуля) 

1. |𝑧1 + 𝑧2| ≤ |𝑧2| + |𝑧2|
2. |𝑧1𝑧2| = |𝑧1| ⋅ |𝑧2|
3. |𝑧1

𝑧2
| = |𝑧1|

|𝑧2|

Доказательство.  Пусть дано:

• 𝑧1 = 𝑎 + 𝑏𝑖
• 𝑧2 = 𝑐 + 𝑑𝑖

1. Следует из неравенства треугольника для евклидового расстояния.

2. С одной стороны имеем:

|𝑧1𝑧2| = |(𝑎𝑐 − 𝑏𝑑) + (𝑎𝑑 + 𝑏𝑐)𝑖| = √(𝑎𝑐 − 𝑏𝑑)2 + (𝑎𝑑 + 𝑏𝑐)2 = √𝑎2𝑐2 − 2𝑎𝑏𝑐𝑑 + 𝑏2𝑑2 + 𝑎2𝑑2 + 2𝑎𝑏𝑐𝑑 + 𝑏2𝑐2

= √𝑎2𝑐2 + 𝑏2𝑑2 + 𝑎2𝑑2 + 𝑏2𝑐2

С другой стороны имеем:

|𝑧1| ⋅ |𝑧2| = √𝑎2 + 𝑏2√𝑐2 + 𝑑2 = √(𝑎2 + 𝑏2)(𝑐2 + 𝑑2) = √𝑎2𝑐2 + 𝑏2𝑑2 + 𝑎2𝑑2 + 𝑏2𝑐2

Следовательно, |𝑧1𝑧2| = |𝑧1| ⋅ |𝑧2|.
3. Аналогично пункту 2.

⁠ □

Определение 19 (Аргумент комплексного числа)  Пусть 𝑧 = 𝑎 + 𝑏𝑖 ≠ 0. Тогда аргументом 𝑧 

называется угол между осью абсцисс и вектором ⃗𝑧:

𝜑 = arg 𝑧 = arctg 𝑏
𝑎
, −𝜋 < 𝜑 ≤ 𝜑

Измеряется в радианах и откладывается против часовой стрелки.

Числу 𝑧 = 0 может быть приписан любой аргумент.

Понятия модуля и аргумента комплексного числа подводят нас к еще одной геометрической модели: 

полярная система координат. Комплексное число можно представить в виде (𝑟, 𝜑) = (|𝑧|, arg 𝑧). На примере 

𝑧 = 4 + 3𝑖:

1 2 3 4 5 Re

1

2

3

4

5
Im

0

𝜑

𝑟

4 + 3𝑖

6. Тригонометрическая форма комплексного числа. Умножение и 

деление комплексных чисел в тригонометрической форме.
Модуль и аргумент комплексного числа подводят нас к определению его тригонометрической формы.
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Определение 20 (Тригонометрчиеская форма комплексного числа)  Комплексное число 𝑧 = 𝑎 + 𝑏𝑖 
представима в тригонометрической форме:

𝑧 = 𝑟(cos 𝜑 + 𝑖 sin 𝜑)

Примечание

• Угол у синуса и косинуса всегда должен быть одинаковый

• Между синусом и косинусом всегда должен стоять знак «+»

Примечание

Тригонометрическую формулу можно легко вывести. Вынесем модуль за скобку:

𝑧 = 𝑎 + 𝑏𝑖 = √𝑎2 + 𝑏2( 𝑎√
𝑎2 + 𝑏2

+ 𝑏√
𝑎2 + 𝑏2

𝑖) = 𝑟(𝑎
𝑟

+ 𝑏
𝑟
𝑖)

Теперь заметим, что 
𝑎
𝑟

= cos 𝜑 и 
𝑏
𝑟

= sin 𝜑 (см. прямоугольный треугольник в плоскости). Из этого 

получаем:

𝑧 = 𝑟(cos 𝜑 + 𝑖 sin 𝜑)

Свойство 21 (Произведение комплексных чисел в тригонометрической форме)  Пусть дано:

• 𝑧1 = 𝑟1(cos 𝛼 + 𝑖 sin 𝛼)
• 𝑧2 = 𝑟2(cos 𝛽 + 𝑖 sin 𝛽)

Тогда произведение 𝑧1𝑧2 равно:

𝑧1𝑧2 = 𝑟1𝑟2(cos(𝛼 + 𝛽) + 𝑖 sin(𝛼 + 𝛽))

Доказательство. 

𝑧1𝑧2 = 𝑟1(cos 𝛼 + 𝑖 sin 𝛼)𝑟2(cos 𝛽 + 𝑖 sin 𝛽)

= 𝑟1𝑟2(cos 𝛼 cos 𝛽 + 𝑖 cos 𝛼 sin 𝛽 + 𝑖 sin 𝛼 cos 𝛽 + 𝑖2 sin 𝛼 sin 𝛽)
= 𝑟1𝑟2(cos 𝛼 cos 𝛽 − sin 𝛼 sin 𝛽 + 𝑖(cos 𝛼 sin 𝛽 + sin 𝛼 cos 𝛽))
= 𝑟1𝑟2(cos(𝛼 + 𝛽) + 𝑖 sin(𝛼 + 𝛽))

⁠ □

Свойство 22 (Частное комплексных чисел в тригонометрической форме)  Пусть дано:

• 𝑧1 = 𝑟1(cos 𝛼 + 𝑖 sin 𝛼)
• 𝑧2 = 𝑟2(cos 𝛽 + 𝑖 sin 𝛽)

Тогда частное 
𝑧1
𝑧2

 равно:

𝑧1
𝑧2

= 𝑟1
𝑟2

(cos(𝛼 + 𝛽) + 𝑖 sin(𝛼 − 𝛽))

Доказательство.  Ключевой шаг — умножить числитель и знаменатель на сопряженное знаменателя:
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𝑧1
𝑧2

= 𝑟1(cos 𝛼 + 𝑖 sin 𝛼)
𝑟2(cos 𝛽 + 𝑖 sin 𝛽)

= 𝑟1
𝑟2

(cos 𝛼 + 𝑖 sin 𝛼)(cos 𝛽 − 𝑖 sin 𝛽)
(cos 𝛽 + 𝑖 sin 𝛽)(cos 𝛽 − 𝑖 sin 𝛽)

= 𝑟1
𝑟2

cos 𝛼 cos 𝛽 − 𝑖 cos 𝛼 sin 𝛽 + 𝑖 sin 𝛼 cos 𝛽 − 𝑖2 sin 𝛼 sin 𝛽
cos2 𝛽 + sin2 𝛽

= 𝑟1
𝑟2

cos 𝛼 cos 𝛽 + sin 𝛼 sin 𝛽 + 𝑖(sin 𝛼 cos 𝛽 − cos 𝛼 sin 𝛽)
1

= 𝑟1
𝑟2

(cos(𝛼 − 𝛽) + 𝑖 sin(𝛼 − 𝛽))

⁠ □

7. Возведение в степень комплексных чисел в тригонометрической 

форме, формула Муавра.

Свойство 23 (Формула Муавра)  Возведение 𝑧 ∈ ℂ в степень 𝑛 производится по формуле:

𝑧𝑛 = 𝑟𝑛(cos(𝑛𝜑) + 𝑖 sin(𝑛𝜑))

Доказательство.  Немедленно следует из произведения комплексных чисел. ⁠ □

8. Извлечение корней из комплексных чисел.

Свойство 24 (Корень из комплексного числа) 

𝑤 = 𝑛
√

𝑧 = 𝑛
√

𝑟(cos 𝜑 + 2𝜋𝑘
𝑛

+ 𝑖 sin 𝜑 + 2𝜋𝑘
𝑛

), 𝑘 = 0, 1, 2, …, 𝑛 − 1

Доказательство.  Пусть 𝑧 = 𝑟(cos 𝜑 + 𝑖 sin 𝜑). Покажем, что ( 𝑛
√

𝑧)𝑛 = 𝑧 для любого 𝑘 = 0, 1, …, 𝑛 − 1:

( 𝑛
√

𝑧)𝑛 = ( 𝑛
√

𝑟(cos 𝜑 + 2𝜋𝑘
𝑛

+ 𝑖 sin 𝜑 + 2𝜋𝑘
𝑛

))
𝑛

= 𝑟(cos(𝑛𝜑 + 2𝜋𝑘
𝑛

) + 𝑖 sin(𝑛𝜑 + 2𝜋𝑘
𝑛

))

= 𝑟(cos(𝜑 + 2𝜋𝑘) + 𝑖 sin(𝜑 + 2𝜋𝑘))
= 𝑟(cos 𝜑 + 𝑖 sin 𝜑)

⁠ □

9. Экспоненциальная форма комплексного числа. Формула Эйлера.

Определение 25 (Формула Эйлера) 

𝑒𝑖𝜑 = cos 𝜑 + 𝑖 sin 𝜑

Re(𝑒𝑖𝜑) = cos 𝜑 Im(𝑒𝑖𝜑) = sin 𝜑

Примечание

Данная формула доказывается через степенные ряды. Сейчас это опустим и просто примем на веру.
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Свойство 26 (Связь между тригонометрическими функциями и 𝑒𝑖𝜑) 

cos 𝜑 = 𝑒𝑖𝜑 + 𝑒−𝑖𝜑

2
sin 𝜑 = 𝑒𝑖𝜑 − 𝑒−𝑖𝜑

2𝑖

Доказательство. 

𝑒𝑖𝜑 + 𝑒−𝑖𝜑 = (cos 𝜑 + 𝑖 sin 𝜑) + (cos(−𝜑) + 𝑖 sin(−𝜑))
= cos 𝜑 + 𝑖 sin 𝜑 + cos 𝜑 − 𝑖 sin 𝜑
= 2 cos 𝜑

⟹ cos 𝜑 = 𝑒𝑖𝜑 + 𝑒−𝑖𝜑

2

𝑒𝑖𝜑 − 𝑒−𝑖𝜑 = (cos 𝜑 + 𝑖 sin 𝜑) − (cos(−𝜑) + 𝑖 sin(−𝜑))
= cos 𝜑 + 𝑖 sin 𝜑 − cos 𝜑 + 𝑖 sin 𝜑
= 2𝑖 sin 𝜑

⟹ sin 𝜑 = 𝑒𝑖𝜑 − 𝑒−𝑖𝜑

2𝑖

⁠ □

10. Коммутативные кольца. Кольцо многочленов над ℂ и ℝ.

Определение 27 (Кольцо)  Кольцо — алгебраическая структура ⟨𝑅, +, ⋅⟩, обладающая следующими 

свойствами:

1. Ассоциативность сложения:

∀𝑎, 𝑏, 𝑐 ∈ 𝑅. (𝑎 + 𝑏) + 𝑐 = 𝑎 + (𝑏 + 𝑐)

2. Существование нейтрального элемента по сложению:

∃0 ∈ 𝑅. ∀𝑎 ∈ 𝑅. 𝑎 + 0 = 0 + 𝑎 = 𝑎

3. Существование обратного элемента по сложению:

∀𝑎 ∈ 𝑅. ∃(−𝑎) ∈ 𝑅. 𝑎 + (−𝑎) = (−𝑎) + 𝑎 = 0

4. Коммутативность сложения:

∀𝑎, 𝑏 ∈ 𝑅. 𝑎 + 𝑏 = 𝑏 + 𝑎

5. Ассоциативность умножения:

∀𝑎, 𝑏, 𝑐 ∈ 𝑅. (𝑎 ⋅ 𝑏) ⋅ 𝑐 = 𝑎 ⋅ (𝑏 ⋅ 𝑐)

6. Дистрибутивность умножения относительно сложения:

∀𝑎, 𝑏, 𝑐 ∈ 𝑅. {(𝑎 + 𝑏) ⋅ 𝑐 = (𝑎 ⋅ 𝑐) + (𝑏 ⋅ 𝑐)
𝑐 ⋅ (𝑎 + 𝑏) = (𝑐 ⋅ 𝑎) + (𝑐 ⋅ 𝑏)

Примечание

Если вкратце, то кольцо — структура ⟨𝑅, +, ⋅⟩ со свойствами:

1. ⟨𝑅, +⟩ — абелева группа

2. ⟨𝑅, ⋅⟩ ассоциативно

3. Дистрибутивность умножения относительно сложения с двух сторон (мы явно пишем «с двух сторон», 

так как умножение в кольце не обязательно коммутативно)

Определение 28 (Коммутативное кольцо)  Коммутативное кольцо — кольцо, коммутативное по 

умножению: ∀𝑎, 𝑏 ∈ 𝑅. 𝑎 ⋅ 𝑏 = 𝑏 ⋅ 𝑎
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Определение 29 (Кольцо многочленов над ℝ)  ℝ[𝑥] — кольцо многочленов от переменной 𝑥, где 

каждый коэффициент является действительным числом.

Пример.  (7𝑥2 +
√

2𝑥 + 𝜋) ∈ ℝ[𝑥]

Определение 30 (Кольцо многочленов над ℂ)  ℂ[𝑥] — кольцо многочленов от переменной 𝑥, где 

каждый коэффициент является комплексным числом.

Пример.  (4𝑥2 + (3 − 9𝑖)𝑥 + 2𝑖) ∈ ℂ[𝑥]

TODO: арифметические свойства deg?

11. Деление многочленов с остатком. Теорема Безу.

Теорема 31 (Деление многочленов с остатком)  Для любых двух многочленов 𝐹(𝑥) и 𝐺(𝑥) существует 

единственная пара 𝑃(𝑥) (частное) и 𝑄(𝑥) (остаток) такая, что 𝐹(𝑥) = 𝐺(𝑥) ⋅ 𝑃 (𝑥) + 𝑄(𝑥), причем 

deg(𝑄(𝑥)) < deg(𝐺(𝑥)) или 𝑄(𝑥) = 0.

Примечание

Прикладной смысл данной теоремы заключается в том, что мы можем делить многочлен на многочлен. 

Например, столбиком.

Пример.  Пусть дано:

• 𝐹(𝑥) = 18𝑥5 + 27𝑥4 − 37𝑥3 − 14𝑥 + 20
• 𝐺(𝑥) = 2𝑥2 + 3𝑥 − 5

Хотим разделить 𝐹(𝑥) на 𝐺(𝑥).

Выполним деление столбиком:

Итак,

• Частное: 𝑃(𝑥) = 9𝑥3 + 4𝑥 − 6
• Остаток: 𝑄(𝑥) = 24𝑥 − 10

Теорема 32 (Теорема Безу)  Остаток деления многочлена 𝐹(𝑥) на (𝑥 − 𝛼) равен 𝐹(𝛼):

𝐹(𝑥) = (𝑥 − 𝑎)𝐺(𝑥) + 𝐹(𝛼)

Доказательство.  Разделим 𝐹(𝑥) на (𝑥 − 𝛼). Пусть 𝑄(𝑥) — остаток. Для него имеем два варианта:

1. Поделили без остатка. Тогда 𝑄(𝑥) = 0
2. Поделили с остатком. Тогда 𝑄(𝑥) = const. Это следует из того, что deg(𝑄(𝑥)) < deg((𝑥 − 𝛼)) = 1, а значит 

deg(𝑄(𝑥)) = 0

В обоих случаях 𝑄(𝑥) — константа. Обозначим ее как 𝐶 .

Тогда многочлен имеет вид:
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𝐹(𝑥) = (𝑥 − 𝛼)𝐺(𝑥) + 𝐶

Вычислим 𝐹(𝛼):

𝐹(𝛼) = (𝛼 − 𝛼)𝐺(𝛼) + 𝐶 = 𝐶

Остюда следует, что:

𝐹(𝑥) = (𝑥 − 𝛼)𝐺(𝑥) + 𝐹(𝛼)

То есть, 𝑄(𝑥) = 𝐹(𝛼). ⁠ □

12. Кратность корня многочлена.

Определение 33 (Кратность корня)  Число 𝑐 называется корнем многочлена 𝑃(𝑥) кратности 𝑘, если 

𝑃(𝑥) делится на (𝑥 − 𝑐)𝑘 без остатка, но не делится на (𝑥 − 𝑐)𝑘+1 (то есть 𝑘 — максимально возможное).

13. Теорема о разложении многочлена на множители над ℝ.

Теорема 34 (Разложение многочлена на множители над ℝ)  Над полем ℝ любой многочлен 𝑃𝑛(𝑥) 

единственным образом раскладывается на линейные множители и квадратные уравнения с 

отрицательным дискриминантом:

𝑃𝑛(𝑥) = 𝑎𝑛 ⋅ (𝑥 − 𝑐1)…(𝑥 − 𝑐𝑟) ⋅ (𝑥2 + 𝑝1𝑥 + 𝑞1)…(𝑥2 + 𝑝𝑠𝑥 + 𝑞𝑠)

Примечание

Единственным образом с точностью до перестановки множителей.

14. Теорема о разложении многочлена на множители над ℂ.

Теорема 35 (Разложение многочлена на множители над ℂ)  Над полем ℂ любой многочлен 𝑃𝑛(𝑥) 

раскладывается на линейные множители, причем их 𝑛 штук (без учета кратности):

𝑃𝑛(𝑥) = 𝑎𝑛(𝑥 − 𝑐1)(𝑥 − 𝑐2)…(𝑥 − 𝑐𝑛)

Примечание

Это является следствием из основной теоремы алгебры, но я решил закомментировать эту часть и оставить 

только это.

15. Матрицы. Определение. Арифметика матриц.

Определение 36 (Матрица)  Прямоугольная таблица чисел, состоящая из 𝑚 строк и 𝑛 столбцов 

называется матрицей размера 𝑚 × 𝑛:

𝐴𝑚×𝑛 = (𝑎𝑖𝑗)𝑚×𝑛
=

(




𝑎11
𝑎21
⋮

𝑎𝑚1

𝑎12
𝑎22
⋮

𝑎𝑚2

…
…
⋱
…

𝑎1𝑛
𝑎2𝑛
⋮

𝑎𝑚𝑛)




𝑎𝑖𝑗 — элемент матрицы, стоящий на 𝑖-ой строке, 𝑗-ом столбце.
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Определение 37 (Квадратная матрица)  Если у матрицы количество столбцов равно количеству строк, 

то такую матрицу называют квадратной.

Определение 38 (Главная и побочная диагонали)  Главной диагональю квадратной матрицы 

называются элементы 𝑎11, 𝑎22, …, 𝑎𝑚𝑚:

(




𝑎11
𝑎22

⋱
𝑎𝑚𝑚)





Побочной диагональю квадратной матрицы называются элементы 𝑎1𝑚, 𝑎2(𝑚−1), …, 𝑎𝑚1:

(




𝑎𝑚1

⋰
𝑎2(𝑚−1)

𝑎1𝑚

)




Определение 39 (Единичная матрица)  Единичная матрица — квадратная матрица, где на главной 

диагонали стоят единицы, а остальные элементы равны нулю:

𝐸𝑚×𝑚 =

(




𝟏
0
⋮
0

0
𝟏
⋮
0

…
…
⋱
…

0
0
⋮
𝟏)




Определение 40 (Сумма матриц)  Пусть даны матрицы 𝐴 = (𝑎𝑖𝑗) и 𝐵 = (𝑏𝑖𝑗) одинакового размера. 

Каждый элемент их суммы 𝐶 = 𝐴 + 𝐵 равен сумме соответствующих элементов слагаемых:

𝐶 = 𝐴 + 𝐵 ⟺ ∀𝑖, 𝑗. 𝑐𝑖𝑗 = 𝑎𝑖𝑗 + 𝑏𝑖𝑗

Свойство 41 (Свойства суммы матриц)  Операции суммы матриц свойственно:

• Коммутативность: 𝐴 + 𝐵 = 𝐵 + 𝐴
• Ассоциативность: 𝐴 + (𝐵 + 𝐶) = (𝐴 + 𝐵) + 𝐶

Определение 42 (Произведение матриц на число)  Пусть дана матрица 𝐴 = (𝑎𝑖𝑗) и число 𝜆. Каждый 

элемент их произведения 𝐵 = 𝜆 ⋅ 𝐴 равен произведению данного элемента на 𝜆:

𝐵 = 𝜆 ⋅ 𝐴 ⟺ ∀𝑖, 𝑗. 𝑏𝑖𝑗 = 𝜆 ⋅ 𝑎𝑖𝑗

Свойство 43 (Свойства произведения матрицы на число)  Операции умножения матрицы на число 

свойственно:

• Ассоциативность: 𝜆 ⋅ (𝜇 ⋅ 𝐴) = (𝜆 ⋅ 𝜇) ⋅ 𝐴
• Коммутативность: 𝜆 ⋅ 𝐴 = 𝐴 ⋅ 𝜆
• Дистрибутивность относительно сложения матриц: 𝜆 ⋅ (𝐴 + 𝐵) = (𝐴 ⋅ 𝜆) + (𝐵 ⋅ 𝜆)
• Дистрибутивность относительно сложения чисел: 𝐴 ⋅ (𝜆 + 𝜇) = (𝐴 ⋅ 𝜆) + (𝐴 ⋅ 𝜇)
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Определение 44 (Совместные матрицы)  Две матрицы 𝐴𝑛×𝑚 и 𝐵𝑚×𝑘 называются совместными, если 

число столбцов 𝐴 равно числу строк 𝐵.

Определение 45 (Произведение матриц)  Произведением двух совместных матриц 𝐴𝑛×𝑚 ⋅ 𝐵𝑚×𝑘 

называется такая матрица 𝐶𝑛×𝑘, что:

∀𝑖, 𝑗. 𝑐𝑖𝑗 = ∑
𝑛

𝑘=1
𝑎𝑖𝑘𝑏𝑘𝑗

Пример. 

𝐴 =
(

0

2
4

1
3
5)

 𝐵 = (6

8
7
8) 𝐴 ⋅ 𝐵 =

(

(0 ⋅ 6 + 1 ⋅ 8)

(2 ⋅ 6 + 3 ⋅ 8)
(4 ⋅ 6 + 5 ⋅ 8)

(0 ⋅ 7 + 1 ⋅ 9)
(2 ⋅ 7 + 3 ⋅ 9)
(4 ⋅ 7 + 5 ⋅ 9))


 =

(

 8

36
64

9
41
73)




Примечание

Визуализация произведения матриц 𝐴42 ⋅ 𝐵23:

A

B

Свойство 46 (Свойства произведения матрицы) 

1. Ассоциативность: 𝐴 ⋅ (𝐵 ⋅ 𝐶) = (𝐴 ⋅ 𝐵) ⋅ 𝐶
2. Дистрибутивность справа: (𝐴 + 𝐵) ⋅ 𝐶 = 𝐴 ⋅ 𝐶 + 𝐵 ⋅ 𝐶
3. Дистрибутивность слева: 𝐶 ⋅ (𝐴 + 𝐵) = 𝐶 ⋅ 𝐴 + 𝐶 ⋅ 𝐵
4. Нейтральный элемент: 𝐸 ⋅ 𝐴 = 𝐴 ⋅ 𝐸 = 𝐴

Предупреждение

Произведение матриц чаще всего не коммутативно: 𝐴 ⋅ 𝐵 ≠ 𝐵 ⋅ 𝐴.

Определение 47 (Транспонированная матрица)  Пусть дана матрица 𝑀𝑛×𝑚. Транспонированная 

матрица 𝑀𝑇
𝑚×𝑛 — матрица, столбцы которой равны строкам исходной матрицы.

Пример. 

𝐴 =
(

1

4
7

2
5
8

3
6
9)

 𝐴𝑇 =

(

1

2
3

4
5
6

7
8
9)



Свойство 48 (Свойства транспонирования) 

1. (𝐴𝑇 )𝑇 = 𝐴
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2. (𝐴 + 𝐵)𝑇 = 𝐴𝑇 + 𝐵𝑇

3. (𝜆𝐴)𝑇 = 𝜆𝐴𝑇 , 𝜆 ∈ ℝ
3. (𝐴 ⋅ 𝐵)𝑇 = 𝐵𝑇 ⋅ 𝐴𝑇

Определение 49 (Кососимметическая матрица)  Матрица 𝐴 называется кососимметрической, если

𝐴𝑇 = −𝐴

Пример. 

𝐴 =
(

0

2
1

−2
0

−3

−1
3
0 )




Действительно, если умножить элементы на −1, а потом транспонировать, то получим исходную матрицу.

16. Определители. Свойства. Теорема Лапласа.
Прежде чем вывести комбинаторную формулу определителя, надо ввести немого понятий, связанных с 

перестановками.

Определение 50 (Перестановки)  Пусть дано какое-то множество натуральных чисел Ω = {1, 2, 3, …, 𝑛}.

Биекция 𝜎 : Ω → Ω называется перестановкой.

Пример.  Пусть Ω = {1, 2, 3}. Определим перестановку таким образом:

𝜎(1) = 3, 𝜎(2) = 1, 𝜎(3) = 2

Определение 51 (Множество перестановок)  Множество вида 𝑆𝑛 будем называть множеством всех 

перестановок для заданного Ω, где |Ω| = 𝑛.

Свойство 52 (Мощность множества перестановок) 

|𝑆𝑛| = 𝑛!

Пример.  Пусть Ω = {1, 2, 3}. Если рассматривать 𝜎 как функцию, с помощью которой мы упорядочиваем 

элементы, то все возможные порядки для Ω:

(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)

Действительно, число перестановок для Ω равно 𝑛!.

Определение 53 (Инверсия)  Инверсией называется случай в перестановке, при котором старший по 

значению элемент стоит раньше по порядку, чем младший.

Функция 𝑡(𝜎) возвращает количество инверсий для перестановки 𝜎.

Пример.  Пусть дана перестановка 𝜎 = (4, 2, 5, 1, 3).
• Инверсии для 1: ∅
• Инверсии для 2: {1}
• Инверсии для 3: ∅
• Инверсии для 4: {2, 1, 3}
• Инверсии для 5: {1, 3}

Имеем 6 инверсий. 𝑡(𝜎) = 6.

14



Определение 54 (Комбинаторная формула определителя, формула Лейбница)  Для квадратной 

матрицы 𝐴𝑛×𝑛:

det 𝐴 = ∑
𝜎∈𝑆𝑛

−1𝑡(𝜎) ⋅ 𝑎1𝜎(1)𝑎2𝜎(2)…𝑎𝑛𝜎(𝑛)

Обозначения определителя:

det 𝐴 Δ |𝐴|
|

𝑎11

⋮
𝑎𝑛1

…
⋱
…

𝑎1𝑛
⋮

𝑎𝑛𝑛|



Примечание

Разберем эту формулу по частям.

• Переберем все возможные перестановки: 𝜎 ∈ 𝑆𝑛
• Для каждой перестановки:

‣ Берем по одному элементу для каждой строки: 1, 2, …, 𝑛. Для каждой строки берем столбец под 

номером, равным перестановке номера строки: 𝜎(1), 𝜎(2), …, 𝜎(𝑛). В общем, берем элементы 𝑎1𝜎(1), 

𝑎2𝜎(2), …, 𝑎𝑛𝜎(𝑛).

‣ Перемножаем все эти элементы.

‣ Считаем количество инверсий: 𝑡(𝜎). Если четно, то оставляем знак. Если нечетно, меняем знак на 

противоположный.

• Суммируем все произведения.

Определение 55 (Минор матрицы)  Минором матрицы 𝐴 называется определитель матрицы 𝑀𝑖𝑗, 

которая получена из 𝐴 путем перечеркивания 𝑖-ой строки и 𝑗-го столбца.

Пример.  Пусть дана матрица:

𝐴 =
(

1

4
7

2
5
8

3
6
9)



Ее (некоторые) миноры:

𝑀22 = |17
3
9| 𝑀13 = |47

5
8| 𝑀21 = |28

3
9|

Определение 56 (Алгебраическое дополнение матрицы)  Алгебраическим дополнением матрицы 𝐴 

называется определитель 𝐴𝑖𝑗, равная

𝐴𝑖𝑗 = (−1)𝑖+𝑗 ⋅ 𝑀𝑖𝑗

Теорема 57 (Теорема Лапласа)  Пусть в квадратной матрице 𝑚 × 𝑚 выбраны любые 𝑘 строк.

Определитель матрицы равен сумме произведений всех миноров 𝑘 × 𝑘, содержащихся в выбранных 

строках, на их алгебраические дополнения.

Теорема 58 (Разложение матрицы по строке/столбцу)  Пусть 𝑘 = 1. Тогда определитель матрицы 𝑛 ×
𝑛 для 𝑖-ой строки или 𝑗-ого столбца равно:
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det 𝐴 = ∑
𝑛

𝑘=1
𝑎𝑖𝑘𝐴𝑖𝑘 = ∑

𝑛

𝑘=1
𝑎𝑘𝑗𝐴𝑘𝑗

Это следствие из теоремы Лапласа.

Пример.  Пусть дана матрица:

𝐴 =
(

1

4
7

2
5
8

3
6
9)



Разложим по второй строке:

det 𝐴 = (−1)2+1 ⋅ 4 ⋅ |28
3
9| + (−1)2+2 ⋅ 5 ⋅ |17

3
9| + (−1)2+3 ⋅ 6 ⋅ |17

2
8|

Теорема 59 (Определитель матрицы 2 × 2) 

|𝑎𝑐
𝑏
𝑑| = 𝑎𝑑 − 𝑏𝑐

Доказательство.  Разложим по строке. ⁠ □

Теорема 60 (Определитель матрицы 3 × 3, правило Саррюса) 

|

𝑎
𝑑
𝑔

𝑏
𝑒
ℎ

𝑐
𝑓
𝑖 |


= 𝑎𝑒𝑖 + 𝑏𝑓𝑔 + 𝑐𝑑ℎ − 𝑐𝑒𝑔 − 𝑏𝑑𝑖 − 𝑎𝑓ℎ

Доказательство.  Разложим по строке. ⁠ □

Примечание

Данное правило легко запомнить: по сути мы проходимся по диагонали, делая wrap-around (свернув в 

матрицу в тор, подобно тому, как было с картами Карно):

Попробуйте пройтись по порядку и заметить это:

𝑎 → 𝑒 → 𝑖 𝑏 → 𝑓 → 𝑔 𝑐 → 𝑑 → ℎ 𝑐 → 𝑒 → 𝑔 𝑏 → 𝑑 → 𝑖 𝑎 → 𝑓 → ℎ

Свойство 61 (Свойства определителей)  Пусть дан определитель Δ.

1. При перемене двух соседних строк (столбцов), знак Δ меняется на противоположный:

|𝑎1
𝑏1

𝑎2
𝑏2

| = −|𝑏1
𝑎1

𝑏2
𝑎2

|

2. Если есть две одинаковые строки (столбца), то Δ = 0:

|𝑎1
𝑎1

𝑎2
𝑎2

| = 0

3. Умножение строки (столбца) на число 𝜆 равносильно 𝜆 ⋅ Δ:

|𝜆𝑎1
𝑏1

𝜆𝑎2
𝑏2

| = 𝜆 ⋅ |𝑎1
𝑏1

𝑎2
𝑏2

|
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4. Если вся строка (столбец) равна нулю, то Δ = 0:

| 0
𝑏1

0
𝑏2

| = 0

5. Если две строки (столбца) пропорциональны, то Δ = 0. (следствие из свойств 2 и 3)

|𝜆𝑏1
𝑏1

𝜆𝑏2
𝑏2

| = 0

6. Определитель матрицы равен определителю транспонированной матрицы:

det 𝐴 = det 𝐴𝑇

7. Если к какой-то строке (столбцу) прибавить другую строку (столбец), умноженную на 𝜆, то Δ не 

поменяется:

|𝑎1 + 𝜆𝑏1
𝑏1

𝑎2 + 𝜆𝑏2
𝑏2

| = |𝑎1
𝑏1

𝑎2
𝑏2

|

8. Если в какой-то строке (столбце) элементы представляют собой какую-то сумму, то можно разложить 

на два определителя и их просуммировать:

|𝑎1 + 𝑐1
𝑏1

𝑎2 + 𝑐2
𝑏2

| = |𝑎1
𝑏1

𝑎2
𝑏2

| + |𝑐1
𝑏1

𝑐2
𝑏2

|

9. Определитель ступенчатой матрицы равен произведению элементов главной диагонали:

|

𝑎
0
0

𝑏
𝑑
0

𝑐
𝑒
𝑓|


= 𝑎𝑑𝑓

17. Обратная матрица. Существование и единственность.

Определение 62 (Обратная матрица)  Матрица 𝐴−1, обратная матрице 𝐴, называется такая матрица, 

что:

𝐴 ⋅ 𝐴−1 = 𝐴−1 ⋅ 𝐴 = 𝐸

Теорема 63 (Критерий существования обратной матрицы)  Обратная матрица существует тогда и 

только тогда, когда det 𝐴 ≠ 0.

Теорема 64 (Единственность обратной матрицы)  Если существует обратная матрица, то она 

единственна.

Определение 65 (Союзная матрица)  Союзная матрица 𝐴∗(adj 𝐴) называется трнаспонированная 

матрица алгебраических дополнений.

𝐴∗ =

(




𝐴11
𝐴12

⋮
𝐴1𝑛

𝐴21
𝐴22

⋮
𝐴2𝑛

…
…
⋱
…

𝐴𝑛1
𝐴𝑛2

⋮
𝐴𝑛𝑛)
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Теорема 66 (Формула обратной матрицы) 

𝐴−1 = 1
det 𝐴

⋅ 𝐴∗

18. Определение СЛАУ. Совместность, определенность. Теорема 

Крамера.

Определение 67 (СЛАУ)  Система линейный алгебраических уравнений (СЛАУ) – система уравнений, где 

каждая неизвестная первой степени:

{


𝑎11𝑥1 + 𝑎12𝑥2 + … + 𝑎1𝑛𝑥𝑛 = 𝑏1

𝑎21𝑥1 + 𝑎22𝑥2 + … + 𝑎2𝑛𝑥𝑛 = 𝑏2
…
𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 + … + 𝑎𝑚𝑛𝑥𝑛 = 𝑏𝑚

СЛАУ представима в виде матриц:

(




𝑎11
𝑎21
⋮

𝑎𝑚1

𝑎12
𝑎22
⋮

𝑎𝑚2

…
…
⋱
…

𝑎1𝑛
𝑎2𝑛
⋮

𝑎𝑚𝑛)




⏟
коэффициенты

(




𝑥1
𝑥2
⋮

𝑥𝑛)




⏟
неизвестные

=

(




𝑏1
𝑏2
⋮

𝑏𝑚)




⏟
свободные члены

𝐴𝑋 = 𝐵

СЛАУ представима в виде линейной комбинации векторов:

(




𝑎11
𝑎21
⋮

𝑎𝑚1)




𝑥1 +

(




𝑎12
𝑎22
⋮

𝑎𝑚2)




𝑥2 + … +

(




𝑎1𝑛
𝑎2𝑛
⋮

𝑎𝑚𝑛)




𝑥𝑛 =

(




𝑏1
𝑏2
⋮

𝑏𝑚)




Определение 68 (Совместная СЛАУ)  СЛАУ называется совместной, если существует хотя бы одно 

решение. Иначе система называется несовместной.

Определение 69 (Определенная СЛАУ)  СЛАУ называется определенной, если существует единственное 

решение. Если решений бесконечно много, то система называется неопределенной.

Теорема 70 (Теорема Крамера)  Пусть дана СЛАУ 𝐴𝑋 = 𝐵. Если det 𝐴 ≠ 0, то существует единственное 

решение.

Доказательство. 

1. Существование. Умножим уравнение на 𝐴−1 слева:

𝐴−1𝐴𝑋 = 𝐴1𝐵 ⟹ 𝑋 = 𝐴−1𝐵

det 𝐴 ≠ 0, значит существует 𝐴−1. 𝐴−1 и 𝐵 совместны, значит их произведение определено.

2. Единственность. 𝐴−1 единственно, значит 𝐴−1𝐵 единственно.

⁠ □

Теорема 71 (Метод Крамера)  Пусть дана СЛАУ 𝐴𝑋 = 𝐵, у которой det 𝐴 ≠ 0. Тогда
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𝑥𝑗 =
Δ𝑗

Δ

1. Δ = det 𝐴
2. Δ𝑗 — определитель матрицы, в которой 𝑗-ый столбец заменен на 𝐵.

TODO: пример

19. Линейная (не)зависимость. Определение, примеры.

Определение 72 (Линейная комбинация)  Линейной комбинацией арифметических векторов 

𝑥1, 𝑥2, …, 𝑥𝑛 и коэффициентов 𝛼1, 𝛼2, …, 𝛼𝑛 называется выражение вида

𝛼1𝑥1 + 𝛼2𝑥2 + … + 𝛼𝑛𝑥𝑛

Определение 73 (Линейная (не)зависимость)  Система векторов 𝑥1, 𝑥2, …, 𝑥𝑛 называется линейно 

независимой, если для уравнения относительно 𝛼𝑖 вида

𝛼1𝑥1 + 𝛼2𝑥2 + … + 𝛼𝑛𝑥𝑛 = 0

все коэффициенты равны нулю:

𝛼1 = 𝛼2 = … = 𝛼𝑛 = 0.

Если какой-то из коэффициентов ненулевой, то система векторов называется линейно зависимой.

TODO: примеры

20. Элементарные преобразования.

Определение 74 (Элементарные преобразования)  Элементарными преобразованиями называются 

следующие операции над матрицей:

1. Перестановка местами любых двух строк

2. Умножение строки на ненулевое число

3. Прибавление к элементам одной строки элементов другой строки, умноженной на любое число

Определение 75 (Эквивалентная матрица)  Матрица 𝐵 называется эквивалентной, если она получена 

из матрицы 𝐴, путем элементарных преобразований. Обозначается как 𝐴 ∼ 𝐵.

21. Ранг матрицы.

Определение 76 (Ранг матрицы)  Рангом матрицы называется порядок наибольшего ненулевого 

минора.

Обозначается как 𝑟(𝐴), rank(𝐴).

Определение 77 (Базисный минор)  Базисный минор — минор, порядок которой равен рангу матрицы.

Теорема 78 (Ранг матрицы элементарных преобразований)  Ранг матрицы не меняется при 

элементарных преобразованиях.
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Теорема 79 (Ранг ступенчатой матрицы)  Ранг ступенчатой матрицы равен количеству ненулевых 

строк.

22. Метод Гаусса (Жордана-Гаусса). Вычисление ранга матрицы.

Теорема 80 (Метод Гаусса)  Чтобы вычислить ранг матрицы, приведем ее к ступенчатому виду путем 

элементарных преобразований, а затем посчитаем количество ненулевых строк.

23. Критерий совместности СЛАУ (теорема Кронекера-Капелли).

Определение 81 (Расширенная матрица)  Пусть даны матрицы 𝐴 и 𝐵, причем обе матрицы имеют 

одинаковое количество строк.

Расширенной матрицей 𝐴|𝐵 называется матрица, в которой справа от 𝐴 приписана 𝐵.

Пример. 

𝐴 = (1
3

2
4) 𝐵 = (5

7
6
8) 𝐴|𝐵 = (1

3
2
4

5
7

6
8)

Теорема 82 (Теорема Кронекера-Капелли)  СЛАУ 𝐴𝑋 = 𝐵 совместна тогда и только тогда, когда

𝑟(𝐴) = 𝑟(𝐴|𝐵)

24. (TODO) Однородная СЛАУ. Свойства решений. Фундаментальная 

система решений.

25. (TODO) Неоднородная СЛАУ. Структура решения.

26. Линейное пространство арифметических векторов. Определение, 

проверка аксиом.

Определение 83 (Линейное пространство)  Линейное пространство 𝑉 (𝐹) — алгебраическая структура 

⟨𝑉 , 𝐹 , +, ⋅⟩, в которой:

• 𝑉  — множество элементов, называемое арифметическими векторами

• 𝐹  — поле элементов, называемое скалярами

• Выполняются следующие свойства:

‣ ⟨𝑉 , +⟩ — аддитивная абелева группа

‣ Ассоциативность умножения на скаляр:

∀𝛼, 𝛽 ∈ 𝐹. ∀𝐴 ∈ 𝑉 . 𝛼(𝛽𝐴) = (𝛼𝛽)𝐴

‣ Нейтральный скаляр:

∃1 ∈ 𝐹. ∀𝐴 ∈ 𝑉 . 1 ⋅ 𝛼 = 𝛼 ⋅ 1 = 𝛼

‣ Дистрибутивность скаляров:

∀𝛼, 𝛽 ∈ 𝐹. ∀𝐴 ∈ 𝑉 . (𝛼 + 𝛽)𝐴 = 𝛼𝐴 + 𝛽𝐴

‣ Дистрибутивность векторов:

∀𝛼 ∈ 𝐹. ∀𝐴, 𝐵 ∈ 𝑉 . (𝐴 + 𝐵)𝛼 = 𝛼𝐴 + 𝛼𝐵
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27. Линейное координатное пространство. Базис, размерность.

Определение 84 (Линейное пространство арифметических векторов)  Назовем кортежи ℝ𝑛 

арифметическим вектором, в котором сумма равна сумме соответствующих векторов:

(




𝑎1
𝑎2
⋮

𝑎𝑛)




+

(




𝑏1
𝑏2
⋮

𝑏𝑛)




=

(




𝑎1 + 𝑏1
𝑎2 + 𝑏2

⋮
𝑎𝑛 + 𝑏𝑛)





А умножение на вектора на скаляр 𝜆 ∈ ℝ умножает каждый элемент на него:

𝜆

(




𝑎1
𝑎2
⋮

𝑎𝑛)




=

(




𝜆𝑎1
𝜆𝑎2

⋮
𝜆𝑎𝑛)





Линейное пространство ⟨ℝ𝑛, ℝ, +, ⋅⟩ назовем линейным пространством арифметических векторов.

28. Базис линейного пространства. Определение, основные теоремы.

Определение 85 (Базис линейного пространства)  Базисом линейного пространства 𝑉  называется 

максимальная линейно независимая система векторов, порождающую 𝑉  (то есть любой вектор из 𝑉  

представим в виде линейной комбинации векторов из базиса).

Теорема 86 (Единственность разложение по базису)  Любой вектор системы разложим по базису (то 

есть представим в виде линейной комбинации базисных векторов) единственным образом.

Теорема 87  В любой системе векторов, в которой есть хотя бы один ненулевой вектор, можно выделить 

базис.

29. Подпространство. Линейная оболочка.

Определение 88 (Подпространство)  Подмножество линейного пространства 𝐿 ⊂ 𝑉 (𝐹) называется 

подпространством, если:

• Является линейным пространством относительно операций 𝑉
• Замкнуто относительно сложения и умножения:

∀𝑋, 𝑌 ∈ 𝐿. 𝑋 + 𝑌 ∈ 𝐿
∀𝑋 ∈ 𝐿. ∀𝜆 ∈ 𝐹. 𝜆𝑥 ∈ 𝐿

Определение 89 (Линейная оболочка)  Пусть дана система векторов 𝑎1, 𝑎2, …, 𝑎𝑛. Линейной оболочкой 

называется множество всех возможных линейных комбинаций векторов из данной системы.

𝐿(𝑎1, 𝑎2, …, 𝑎𝑘) = {𝜆1𝑎1 + 𝜆2𝑎2 + … + 𝜆𝑘𝑎𝑘 | 𝜆1, 𝜆2, …, 𝜆𝑘 ∈ 𝐹}

Определение 90 (Размерность линейной оболочки)  Размерностью линейной оболочки называется 

количество линейно независимых векторов (то есть, рангу матрицы из этих векторов). Обозначается как 

dim 𝐿
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Определение 91 (Операции над подпространствами)  Пусть даны два подпространства: 𝐿1, 𝐿2 ⊂
𝑉 (𝐹).

• Пересечение 𝐿1 ∩ 𝐿2 — пересечение множеств данных подпространств.

• Сумма 𝐿1 + 𝐿2 — множество всех возможных сумм векторов:

𝐿1 + 𝐿2 = {𝑋 + 𝑌 | 𝑋 ∈ 𝐿1, 𝑌 ∈ 𝐿2}

Если 𝐿1 ∩ 𝐿2 = ∅, то 𝐿1 + 𝐿2 называется прямой суммой.

Теорема 92 (Формула Грассмана о связи размерностей)  Пусть даны два подпространства 𝐿1, 𝐿2 ⊂
𝑉 (𝐹). Для них свойственно:

dim(𝐿1 + 𝐿2) = dim 𝐿1 + dim 𝐿2 − dim(𝐿1 ∩ 𝐿2)

30. Преобразование базиса и координат.

Определение 93 (Матрица перехода)  Матрицей перехода называется матрица, столбцы которой — 

координаты новых базисных векторов.

Примечание

Сложно своими словами объяснить суть, но все же попробую.

Пусть у нас есть двумерное векторное пространство, и его базис:

𝐸 = (1
0

0
1)

Столбцы этой матрицы — лиейно независимые вектора. То есть, любой двумерный вектор можно 

представить в виде линейной комбинации векторов (1, 0)𝑇  и (0, 1)𝑇  (попробуйте!). И вдруг мы зачем-то 

захотели выразить эти векторы, но уже в другом базисе:

𝐶 = (2
1

−1
2 )

Тогда мы должны каждый вектор 𝑒 умножить на данную матрицу:

𝑒′ = 𝐶𝑒

Примечательно, что взаимное расположение (например, параллельность) векторов сохранится и в новом 

базисе.

Вообще у 3b1b есть видео про это все дело. Там наглядно.
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31. (TODO) Системы координат. Определение. Декартовы и полярная 

СК.

32. (TODO) Геометрический вектор в координатном пространстве. 

Определение, характеристики.

33. Произведения (скалярное, векторное, смешанное) векторов и их 

приложения.

Определение 94 (Скалярное произведение векторов)  Скалярное произведение векторов ⃗𝑎 и ⃗𝑏 

обозначается как ( ⃗𝑎, ⃗𝑏) или ⃗𝑎 ⋅ ⃗𝑏, и равно:

1. Произведению модулей на косинус угла между ними:

( ⃗𝑎, ⃗𝑏) = | ⃗𝑎| ⋅ | ⃗𝑏| ⋅ cos ∠( ⃗𝑎, ⃗𝑏)

2. Сумме попарного произведения координат:

( ⃗𝑎, ⃗𝑏) = 𝑥1𝑥2 + 𝑦1𝑦2

Свойство 95 (Арифметические свойства скалярного произведения) 

1. ( ⃗𝑎, ⃗𝑏) = ( ⃗𝑏, ⃗𝑎)

2. (𝜆 ⃗𝑎, ⃗𝑏) = ( ⃗𝑎, 𝜆 ⃗𝑏) = 𝜆( ⃗𝑎, ⃗𝑏)

3. ( ⃗𝑎, ⃗𝑏 + ⃗𝑐) = ( ⃗𝑎, ⃗𝑏) + ( ⃗𝑎, ⃗𝑐)

Свойство 96 (Приложения скалярного произведения) 

1. Угол между векторами:

cos ∠( ⃗𝑎, ⃗𝑏) = ⃗𝑎, ⃗𝑏
| ⃗𝑎| ⋅ | ⃗𝑏|

2. Признак перпендикулярности:

⃗𝑎 ⟂ ⃗𝑏 ⟺ ( ⃗𝑎, ⃗𝑏) = 0

3. Длина вектора:

| ⃗𝑎| = √( ⃗𝑎, ⃗𝑎)

Определение 97 (Векторное произведение векторов)  Векторное произведение векторов ⃗𝑎 и ⃗𝑏 

обозначается как [ ⃗𝑎, ⃗𝑏] или ⃗𝑎 × ⃗𝑏, и равно вектору, вычисляемому по формуле:

[ ⃗𝑎, ⃗𝑏] =

|


 ⃗𝑖
𝑥1
𝑥2

⃗𝑗
𝑦1
𝑦2

𝑘⃗
𝑧1
𝑧2|





(разложение по первой строке)

Свойство 98 (Свойства векторного произведения)  Пусть ⃗𝑐 = [ ⃗𝑎, ⃗𝑏].

1. Модуль ⃗𝑐 равен площади параллелограмма, натянутого на векторы ⃗𝑎 и ⃗𝑏
2. ⃗𝑐 перпендикулярен данному параллелограмму
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3. Направление ⃗𝑐 выбирается так, что векторы составляют правую тройку

Свойство 99 (Арифметические свойства векторного произведения) 

1. [ ⃗𝑎, ⃗𝑎] = ⃗0

2. [ ⃗𝑎, ⃗𝑏] = −[ ⃗𝑏, ⃗𝑎]

3. [𝜆 ⃗𝑎, ⃗𝑏] = [ ⃗𝑎, 𝜆 ⃗𝑏] = 𝜆[ ⃗𝑎, ⃗𝑏], 𝜆 ∈ ℝ

4. [ ⃗𝑎 + ⃗𝑏, ⃗𝑐] = [ ⃗𝑎, ⃗𝑐] + [ ⃗𝑏, ⃗𝑐]

Свойство 100 (Приложения векторного произведения) 

1. Площадь параллелограмма, натянутого на векторы ⃗𝑎 и ⃗𝑏:

𝑆параллелограмма = | ⃗𝑎 × ⃗𝑏|

2. Площадь треугольника, натянутого на векторы ⃗𝑎 и ⃗𝑏:

𝑆△ = 1
2
| ⃗𝑎 × ⃗𝑏|

3. Высота паралеллограмма и треугольника, проведенная к вектору ⃗𝑎:

𝐻паралеллограмма = 𝐻△ =
| ⃗𝑎 × ⃗𝑏|

√( ⃗𝑎, ⃗𝑏)

Определение 101 (Смешанное произведение векторов)  Смешанное произведение векторов ⃗𝑎, ⃗𝑏, ⃗𝑐 

обозначается как ( ⃗𝑎, ⃗𝑏, ⃗𝑐) и вычисляется по формуле:

( ⃗𝑎, ⃗𝑏, ⃗𝑐) = ([ ⃗𝑎, ⃗𝑏], ⃗𝑐) =
|

𝑥1
𝑥2
𝑥3

𝑦1
𝑦2
𝑦3

𝑧1
𝑧2
𝑧3|




Определение 102 (Свойства смешанного произведения) 

1. ([ ⃗𝑎, ⃗𝑏], ⃗𝑐) = ( ⃗𝑎, [ ⃗𝑏, ⃗𝑐])

2. Циклическая перестановка аргументов не меняет знак:

( ⃗𝑎, ⃗𝑏, ⃗𝑐) = ( ⃗𝑏, ⃗𝑐, ⃗𝑎) = ( ⃗𝑐, ⃗𝑎, ⃗𝑏)

В остальных перестановках знак меняется на проитивоположный:

−( ⃗𝑎, ⃗𝑐, ⃗𝑏) = −( ⃗𝑏, ⃗𝑎, ⃗𝑐) = −( ⃗𝑐, ⃗𝑏, ⃗𝑎)

Определение 103 (Приложения произведения векторов) 

1. Критерий компланарности векторов:

⃗𝑎, ⃗𝑏, ⃗𝑐 компланарны ⟺ ( ⃗𝑎, ⃗𝑏, ⃗𝑐) = 0

2. Объем параллелепипеда, натянутого на векторы ⃗𝑎, ⃗𝑏, ⃗𝑐:

𝑉параллелепипеда = |( ⃗𝑎, ⃗𝑏, ⃗𝑐)|
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3. Объем пирамиды, натянутого на векторы ⃗𝑎, ⃗𝑏, ⃗𝑐:

𝑉пирамиды = 1
6
|( ⃗𝑎, ⃗𝑏, ⃗𝑐)|

4. Высота параллелепипеда, проведенной к основанию, натянутого на ⃗𝑎, ⃗𝑏:

𝐻параллелепипеда =
𝑉параллелепипеда

𝑆основания

=
|( ⃗𝑎, ⃗𝑏, ⃗𝑐)|

|[ ⃗𝑎, ⃗𝑏]|

5. Высота пирамиды, проведенной к основанию, натянутого на ⃗𝑎, ⃗𝑏:

𝐻пирамиды =
3 ⋅ 𝑉пирамиды

𝑆основания

=
|( ⃗𝑎, ⃗𝑏, ⃗𝑐)|

|[ ⃗𝑎, ⃗𝑏]|

34. Коллинеарность, компланарность, ортогональность векторов. 

Критерии.

Определение 104 (Коллинеарность векторов)  Два вектора ⃗𝑎, ⃗𝑏 называются коллинеарными, если они 

лежат на одной прямой, либо на параллельных прямых. Обозначается как ⃗𝑎 ‖ ⃗𝑏.

Теорема 105 (Критерий коллинеарности векторов)  Два вектора коллинеарны тогда и только тогда, 

когда равны отношения координат:

⃗𝑎 ‖ ⃗𝑏 ⟺ 𝑥1
𝑥2

= 𝑦1
𝑦2

= 𝑧1
𝑧3

Определение 106 (Компланарность векторов)  Три вектора ⃗𝑎, ⃗𝑏, ⃗𝑐 называются компланарными, если, 

приведя их к одному началу, они лежат на одной плоскости.

Теорема 107 (Критерий компланарности векторов)  Три вектора компланарны тогда и только тогда, 

когда их смешанное произведение равно нулю:

⃗𝑎, ⃗𝑏, ⃗𝑐 компланарны ⟺ ( ⃗𝑎, ⃗𝑏, ⃗𝑐) = 0

Определение 108 (Ортогональность векторов)  Два вектора называются ортогональными 

(перпендикулярными), если угол между ними прямой. Обозначается как ⃗𝑎 ⟂ ⃗𝑏.

Теорема 109 (Критерий ортогональности векторов)  Два вектора ортогональны тогда и только тогда, 

когда их скалярное произведение равно нулю:

⃗𝑎 ⟂ ⃗𝑏 ⟺ ( ⃗𝑎, ⃗𝑏) = 0

35. Уравнения плоскости в пространстве.

Определение 110 (Уравнение плоскости через точку и перпендикулярный вектор)  Пусть дан 

ненулевой вектор 𝑛⃗(𝐴, 𝐵, 𝐶) и точка 𝑀0(𝑥0, 𝑦0, 𝑧0). Плоскость, проходящая через 𝑀0 и 

перпендикулярная 𝑛⃗, задается уравнением:
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𝐴(𝑥 − 𝑥0) + 𝐵(𝑦 − 𝑦0) + 𝐶(𝑧 − 𝑧0) = 0

Примечание

Данное уравнение нетрудно вывести.

Пусть у нас есть вектор 𝑛⃗(𝐴, 𝐵, 𝐶) и точка 𝑀0(𝑥0, 𝑦0, 𝑧0). Как понять, что произвольная точка 𝑀(𝑥, 𝑦, 𝑧) 
принадлежит плоскости? Вектор 𝑀𝑀0(𝑥 − 𝑥0, 𝑦 − 𝑦0, 𝑧 − 𝑧0) должен быть перпендикулярен вектору 𝑛⃗.

Вспоминаем признак перпендикулярности векторов: скалярное произведение равно нулю.

𝑛⃗ ⋅ 𝑀𝑀0 = 0 ⟺ 𝐴(𝑥 − 𝑥0) + 𝐵(𝑦 − 𝑦0) + 𝐶(𝑧 − 𝑧0) = 0

Определение 111 (Общее уравнение плоскости) 

𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 + 𝐷 = 0

• 𝐴, 𝐵, 𝐶 — координаты вектора нормали

• 𝐷 — коэффициент, характеризующий расстояние от начала координат до плоскости (но не равный ему)

Примечание

Данную формулу можно вывести из уравнения плоскости через нормаль-вектор и точку.

Пусть дано:

𝐴(𝑥 − 𝑥0) + 𝐵(𝑦 − 𝑦0) + 𝐶(𝑧 − 𝑧0) = 0

Раскроем скобки:

𝐴𝑥 − 𝐴𝑥0 + 𝐵𝑦 − 𝐵𝑦0 + 𝐶𝑧 − 𝐶𝑧0 = 0

Сгруппируем:

𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 − (𝐴𝑥0 + 𝐵𝑦0 + 𝐶𝑧0) = 0

Положим 𝐷 = −(𝐴𝑥0 + 𝐵𝑦0 + 𝐶𝑧0) и получим общее уравнение плоскости.

Свойство 112 (Частные случаи общего уравнения плоскости) 

• Если 𝐷 = 0, то плоскость проходит через начало координат

• Если 𝐴 = 0, то плоскость параллельна оси 𝑂𝑥. Аналогично, если 𝐵 = 0, то параллельна 𝑂𝑦. Если 𝐶 = 0, 

то параллельна 𝑂𝑧
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• Если 𝐴 = 𝐵 = 0, то плоскость параллельна плоскости 𝑂𝑥𝑦. Аналогично для других комбинаций.

Примечание

Одну и ту же плоскость могут задавать разные уравнения.

При любом 𝜆 ≠ 0 уравнение

(𝜆𝐴)𝑥 + (𝜆𝐵)𝑦 + (𝜆𝐶)𝑧 + 𝜆𝐷 = 0

описывает одну и ту же плоскость.

Определение 113 (Уравнение плоскости в отрезках) 

𝑥
𝑎

+ 𝑦
𝑏

+ 𝑧
𝑐

= 1

• 𝑎, 𝑏, 𝑐 — длины отрезков, отсекающих координатные оси

Примечание

Уравнение плоскости в отрезках можно вывести из общего уравнения плоскости.

Пусть дано:

𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 + 𝐷 = 0

Перенесем 𝐷 вправо:

𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 = −𝐷

Полелим уравнение на −𝐷:

−𝐴
𝐷

𝑥 − 𝐵
𝐷

𝑦 − 𝐶
𝐷

𝑧 = 1

Отсюда получаем, что 𝑎 = −𝐷
𝐴

,  𝑏 = −𝐷
𝐵

,  𝑐 = −𝐷
𝐶

.

Определение 114 (Нормальное уравнение плоскости) 

𝑥 cos 𝛼 + 𝑦 cos 𝛽 + 𝑧 cos 𝛾 − 𝑝 = 0

• cos 𝛼, cos 𝛽, cos 𝛾 — направляющие косинусы нормали плоскости

• 𝑝 — расстояние от начала координат до плоскости
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Примечание

Нормальное уравнение плоскости можно получить, разделив общее уравнение плоскости на 

±√𝐴2 + 𝐵2 + 𝐶2 (т.н. нормирующий множитель). Знак нормирующего множителя противоположен знаку 

𝐷.

Свойство 115 (Взаимное расположение двух плоскостей)  Пусть даны две плоскости, описанные 

общим уравнением.

• Плоскости параллельны, если их нормали коллинеарны:

𝐴1
𝐴2

= 𝐵1
𝐵2

= 𝐶1
𝐶2

• Плоскости совпадают, если их нормали коллинеарны, а отношение их координат равно отношению 

коэффициентов 𝐷:

𝐴1
𝐴2

= 𝐵1
𝐵2

= 𝐶1
𝐶2

= 𝐷1
𝐷2

• Плоскости перпендикулярны тогда и только тогда, когда их нормали перпендикулярны:

𝐴1𝐴2 + 𝐵1𝐵2 + 𝐶1𝐶2 = 0

Свойство 116 (Угол между двумя плоскостями)  Угол между двумя плоскостями равен углу между их 

нормалями:

cos 𝜑 = 𝑛⃗1, 𝑛⃗2
|𝑛⃗1| ⋅ |𝑛⃗2|

= 𝐴1𝐴2 + 𝐵1𝐵2 + 𝐶1𝐶2

√𝐴2
1 + 𝐵2

1 + 𝐶2
1 √𝐴2

2 + 𝐵2
2 + 𝐶2

2

Примечание

Данную формулу можно получить, приравняв две формулы скалярного произведения и выразив cos 𝜑.

Теорема 117 (Расстояние от точки до плоскости)  Пусть дана точка 𝑀(𝑥0, 𝑦0, 𝑧0) и плоскость, заданная 

уравнением 𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 + 𝐷 = 0. Расстояние между ними равно:

𝜌 = |𝐴𝑥0 + 𝐵𝑦0 + 𝐶𝑧0 + 𝐷|√
𝐴2 + 𝐵2 + 𝐶2
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36. Уравнения прямой в пространстве.

Определение 118 (Направляющий вектор)  Вектор, коллинеарный прямой, называется направляющим.

Определение 119 (Каноническое уравнение прямой) 

𝑥 − 𝑥0
𝑚

= 𝑦 − 𝑦0
𝑛

= 𝑧 − 𝑧0
𝑝

• 𝑀0(𝑥0, 𝑦0, 𝑧0) — любая точка на прямой

• ⃗𝑠(𝑚, 𝑛, 𝑝) — направляющий вектор прямой

Определение 120 (Уравнение прямой через две точки) 

𝑥 − 𝑥1
𝑥2 − 𝑥1

= 𝑦 − 𝑦1
𝑦2 − 𝑦1

= 𝑧 − 𝑧1
𝑧2 − 𝑧1

• 𝑀1(𝑥1, 𝑦1, 𝑧1),  𝑀2(𝑥2, 𝑦2, 𝑧2) — точки на прямой

Примечание

Данное уравнение выводится из канонического. Для этого просто возьмем 𝑀1 и вектор 𝑀1𝑀2.

Определение 121 (Уравнение прямой, перпендикулярной плоскости, через заданную точку) 

𝑥 − 𝑥0
𝐴

= 𝑦 − 𝑦0
𝐵

= 𝑧 − 𝑧0
𝐶

• 𝑀0(𝑥0, 𝑦0, 𝑧0) — произвольная точка

• 𝑛⃗(𝐴, 𝐵, 𝐶) — нормаль плоскости

Примечание

Очевидно выводится из канонического уравнения.

Определение 122 (Параметрическое уравнение прямой) 

{

𝑥 = 𝑥0 + 𝑚𝑡

𝑦 = 𝑦0 + 𝑛𝑡
𝑧 = 𝑧0 + 𝑝𝑡

Примечание

Из параметрического уравнения легко перейти к каноническому.

Выразим 𝑡:

{


𝑡 = 𝑥−𝑥0

𝑚
𝑡 = 𝑦−𝑦0

𝑛
𝑡 = 𝑧−𝑧0

𝑝

Из этого следует:
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𝑥 − 𝑥0
𝑚

= 𝑦 − 𝑦0
𝑛

= 𝑧 − 𝑧0
𝑝

Аналогичным образом можно перейти наоборот: от канонического к параметрическому.

Определение 123 (Прямая как пересечение двух плоскостей, общее уравнение прямой)  Пусть 

даны две пересекающиеся плоскости, заданные общими уравнениями. Тогда их линия пересечения 

задается как

{𝐴1𝑥 + 𝐵1𝑦 + 𝐶1𝑧 + 𝐷1 = 0
𝐴2𝑥 + 𝐵2𝑦 + 𝐶2𝑧 + 𝐷2 = 0

Примечание

Чтобы перейти от данной системы к каноническому уравнению, надо:

1. Найти точку на прямой. Возьмем произвольное 𝑧. Решим систему уравнений, получив оставшиеся 

координаты 𝑥 и 𝑦
2. Найти направляющую. Для этого просто возьмем векторное произведение нормалей плоскостей: [𝑛⃗1, 𝑛⃗2]

Свойство 124 (Взаимное расположение прямой и плоскости)  Пусть плоскость задана нормалью 

𝑛⃗(𝐴, 𝐵, 𝐶), а прямая направляющей ⃗𝑠(𝑚, 𝑛, 𝑝)

Их взаимное расположение:

1. Параллельность: скалярное произведение равно нулю:

(𝑛⃗, ⃗𝑠) = 𝐴𝑚 + 𝐵𝑛 + 𝐶𝑝 = 0

2. Перпендикулярность: векторы коллинеарны:

𝐴
𝑚

= 𝐵
𝑛

= 𝐶
𝑝

3. Принадлежность: векторы перпендикулярны и любая точка 𝑀0(𝑥0, 𝑦0, 𝑧0) на прямой принадлежит 

плоскости:

{𝐴𝑚 + 𝐵𝑛 + 𝐶𝑝 = 0
𝐴𝑥0 + 𝐵𝑦0 + 𝐶𝑧0 + 𝐷 = 0

Теорема 125 (Угол между прямой и плоскостью)  Пусть дана прямая с направляющей ⃗𝑠(𝑚, 𝑛, 𝑝) и 

плоскость с нормалью 𝑛⃗(𝐴, 𝐵, 𝐶). Тогда угол между ними равен углу между направляющей и ее 

проекцией на плоскость:

sin 𝜑 = |(𝑛⃗, ⃗𝑠)|
|𝑛⃗| ⋅ | ⃗𝑠|

= |𝐴𝑚 + 𝐵𝑛 + 𝐶𝑝|
√

𝐴2 + 𝐵2 + 𝐶2 ⋅ √𝑚2 + 𝑛2 + 𝑝2

Определение 126 (Скрещивающиеся прямые)  Две прямые скрещиваются, если они не лежат в одной 

плоскости и не параллельны

Свойство 127 (Взаимное расположение прямых в пространстве)  Пусть даны две прямые:

• С точкой 𝑀1(𝑥1, 𝑦1, 𝑧1) и направляющей ⃗𝑠1(𝑚1, 𝑛1, 𝑝1)
• С точкой 𝑀2(𝑥2, 𝑦2, 𝑧2) и направляющей ⃗𝑠2(𝑚2, 𝑛2, 𝑝2)
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Их взаимное расположение:

1. Параллельность: направляющие коллинеарны:

𝑚1
𝑚2

= 𝑛1
𝑛2

= 𝑝1
𝑝2

2. Перпендикулярность: направляющие перпендикулярны:

( ⃗𝑠1, ⃗𝑠2) = 𝑚1𝑚2 + 𝑛1𝑛2 + 𝑝1𝑝2 = 0

3. Принадлежность одной плоскости: направляющие и вектор 𝑀1𝑀2 компланарны:

( 𝑀1𝑀2, ⃗𝑠1, ⃗𝑠2) =
|

𝑥2 − 𝑥1

𝑚1
𝑚2

𝑦2 − 𝑦1
𝑛1
𝑛2

𝑧2 − 𝑧1
𝑝1
𝑝2 |



= 0

4. Пересечение: лежат в одной плоскости (3), но не параллельны (1)

5. Скрещивание: не лежат в одной плоскости (3)

Теорема 128 (Угол между двумя прямыми)  Пусть даны две прямые, заданные направляющими ⃗𝑠1 и 

⃗𝑠2. Угол между прямыми равен углу между данными направляющими:

cos 𝜑 = |( ⃗𝑠1, ⃗𝑠2)|
|𝑠1| ⋅ |𝑠2|

= |𝑚1𝑚2 + 𝑛1𝑛2 + 𝑝1𝑝2|
√𝑚2

1 + 𝑛2
1 + 𝑝2

1 ⋅ √𝑚2
2 + 𝑛2

2 + 𝑝2
2

Теорема 129 (Расстояние между скрещивающимися прямыми)  Пусть даны две прямые. Расстояние 

между ними равна:

𝑑 =
|( 𝑀1𝑀2, ⃗𝑠1, ⃗𝑠2)|

|[ ⃗𝑠1, ⃗𝑠2]|

37. Расстояние от точки до прямой на плоскости.

Теорема 130 (Расстояние от точки до прямой)  Расстоянием от точки до прямой называется длина 

перпендикуляра, опущенного из этой точки на данную прямую.

Пусть дана точка 𝑀1(𝑥1, 𝑦1).

Если прямая задана общим уравнением 𝐴𝑥 + 𝐵𝑦 + 𝐶 = 0, то расстояние равно

𝑑 = |𝐴𝑥1 + 𝐵𝑦1 + 𝐶√
𝐴2 + 𝐵2

|

Если прямая задана в нормальном виде 𝑥 cos 𝛼 + 𝑦 sin 𝛼 − 𝑝 = 0, то

𝑑 = |𝑥1 cos 𝛼 + 𝑦1 sin 𝛼 − 𝑝|

38. Уравнения прямой на плоскости.

Определение 131 (Уравнение пряямой с угловым коэффициентом) 

𝑦 = 𝑘𝑥 + 𝑏

• 𝑘 = tg 𝛼 — угловой коэффициент (𝛼 — угол наклона прямой к оси 𝑂𝑥)

• 𝑏 — отрезок, отсекаемый прямой на оси 𝑂𝑦
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Пример.  При 𝑘 = 1, 𝑏 = 2:

Определение 132 (Общее уравнение прямой) 

𝐴𝑥 + 𝐵𝑦 + 𝐶 = 0

• 𝐴, 𝐵 одновременно не равны нулю.

Пример.  При 𝐴 = 1, 𝐵 = −1, 𝐶 = −2:

Можно заметить, что если:

• перенести 𝐴𝑥 + 𝐶 вправо: 𝐵𝑦 = −𝐴𝑥 − 𝐶 ,

• а затем поделить уравнение на 𝐵: 𝑦 = −𝐴
𝐵

𝑥 − 𝐶
𝐵

,

то мы получим уравнение, уравнение с угловым коэффициентом. Так зачем же тогда общее уравнение? С ее 

помощью можно выразить прямую, параллельную 𝑂𝑦. Пример при 𝐴 = 1, 𝐵 = 0, 𝐶 = −2:
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Определение 133 (Уравнение прямой в отрезках) 

𝑥
𝑎

+ 𝑦
𝑏

= 1

• 𝑎 — длина отрезка, отсеченного на 𝑂𝑥
• 𝑏 — длина отрезка, отсеченного на 𝑂𝑦

Пример.  При 𝑎 = −3, 𝑏 = 2:

Определение 134 (Уравнение прямой, проходящей через две точки)  Пусть даны точки 𝑀1(𝑥1, 𝑦1) и 

𝑀2(𝑥2, 𝑦2).
𝑦 − 𝑦1
𝑦2 − 𝑦1

= 𝑥 − 𝑥1
𝑥2 − 𝑥1

𝑥1 ≠ 𝑥2,  𝑦1 ≠ 𝑦2

Пример.  При 𝑀1(−1, −1) и 𝑀2(2, 3):
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Определение 135 (Уравнение прямой, проходящей через точку в направлении) 

𝑦 − 𝑦1 = 𝑘(𝑥 − 𝑥1)

• 𝑥1, 𝑦1 — координаты точки

• 𝑘 — угловой коэффициент

Пример.  Для точки 𝑀1(3, 2) и 𝑘 = 1:

Определение 136 (Нормальное уравнение прямой) 

𝑥 cos 𝛼 + 𝑦 sin 𝛼 − 𝑝 = 0

• 𝛼 - угол между прямой и 𝑂𝑥
• 𝑝 - длина перпендикуляра между началом координат и прямой

Пример.  При 𝛼 = 𝜋
3

, 𝑝 = 1.5:
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39. Кривые второго порядка. Специальные определения. Канонические 

уравнения. Характеристики.

Определение 137 (Эллипс)  Эллипс — геометрическое место точек, сумма расстояний от которых до двух 

фокусов (точек 𝐹1 и 𝐹2) равна 2𝑎.

Каноническое уравнение:

𝑥2

𝑎2 + 𝑦2

𝑏2 = 1, (𝑎 > 𝑏)

Характеристика:

• Полуоси: 𝑎 (большая), 𝑏 (малая)

• Фокусы: 𝐹1(−𝑐, 0),  𝐹2(𝑐, 0), где 𝑐2 = 𝑎2 − 𝑏2

• Эксцентриситет (см. билет ниже): 𝜀 = 𝑐
𝑎

< 1. Чем ближе к 0, тем «круглее». В нуле окружность.

• Директрисы: прямые 𝑥 = ±𝑎
𝜀

https://www.geogebra.org/calculator/hkxnmhbx
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Определение 138 (Гипербола)  Гипербола — ГМТ, модуль разности расстояний до двух фокусов равен 2𝑎.

Каноническое уравнение:

𝑥2

𝑎2 − 𝑦2

𝑎2 = 1

Характеристика:

• Фокусы: 𝐹1(−𝑐, 0),  𝐹2(𝑐, 0), где 𝑐2 = 𝑎2 + 𝑏2

• Эксцентриситет: 𝜀 = 𝑐
𝑎

> 1
• Асимптоты: 𝑦 = ±𝑏

𝑎
𝑥

• Директрисы: прямые 𝑥 = ±𝑎
𝜀

https://www.geogebra.org/calculator/vdqknr8h

Определение 139 (Парабола)  Парабола — ГМТ, равноудаленных от фокуса (точки 𝐹 ) и директрисы 

(прямой 𝐷)

Каноническое уравнение:

𝑦2 = 2𝑝𝑥

Характеристики:

• Параметр 𝑝 — расстояние от фокуса до директриссы

• Фокус: 𝐹(𝑝/2, 0)
• Директриса: 𝑥 = −𝑝

2
• Эксцентриситет: 𝜀 = 1
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https://www.geogebra.org/calculator/fwwnkrtc

40. Кривые второго порядка. Универсальные определения. Полярное 

уравнение. Общее уравнение.

Определение 140 (Фокально-директориальное свойство, универсальное определение)  Эллипс, 

гипербола и парабола — ГМТ, у которых отношение расстояния до фокуса (𝑟) к расстоянию до 

соответствующей директрисы — константа, равная эксцентриситету 𝜀:

𝜀 = 𝑟
𝑑

• Если 𝜀 < 1, то это эллипс

• Если 𝜀 = 1, то это парабола

• Если 𝜀 > 1, то это гипербола

Определение 141 (Уравнение в полярных координатах) 

𝜌 = 𝑝
1 − 𝜀 cos 𝜑

• 𝑝 — фокальный параметр (половина ширины кривой, проходящей через фокус)

• 𝜀 — эксцентриситет

https://www.geogebra.org/calculator/q2dw2brq

Определение 142 (Общее уравнение кривой второго порядка) 

𝐴𝑥2 + 2𝐵𝑥𝑦 + 𝐶𝑦2 + 2𝐷𝑥 + 2𝐸𝑦 + 𝐹 = 0

41. Классификация кривых второго порядка.

Теорема 143 (Метод классификации кривых второго порядка)  Пусть дано общее уравнение кривой 

второго порядка.
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Возьмем 𝛿 = 𝐴𝐶 − 𝐵2 (т.н. определитель старших членов).

• Если 𝛿 > 0, то перед нами эллипс.

• Если 𝛿 = 0, то перед нами гипербола.

• Если 𝛿 < 0, то перед нами парабола.

42. Поверхности второго порядка. Специальные определения. 

Канонические уравнения. Характеристики.

Определение 144 (Уравнения поверхностей второго порядка) 

1. Эллипсоид:

𝑥2

𝑎2 + 𝑦2

𝑏2 + 𝑧2

𝑐2 = 1

2. Гиперболоиды:

• Однополостный:

𝑥2

𝑎2 + 𝑦2

𝑏2 − 𝑧2

𝑐2 = 1

• Двухполостный:

𝑥2

𝑎2 + 𝑦2

𝑏2 − 𝑧2

𝑐2 = −1

3. Параболоиды:

• Эллиптический:

𝑧 = 𝑥2

𝑎2 + 𝑦2

𝑏2

• Гиперболический:

𝑧 = 𝑥2

𝑎2 − 𝑦2

𝑏2

4. Конус второго порядка:

𝑥2

𝑎2 + 𝑦2

𝑏2 − 𝑧2

𝑐2 = 0

5. Цилиндры:

• Эллиптический (в уравнении отсутствует одна переменная, например 𝑧):

𝑥2

𝑎2 + 𝑦2

𝑏2 = 1

• Параболический:

𝑦2 = 2𝑝𝑥

43. Поверхности второго порядка. Универсальные определения. Общее 

уравнение.

Определение 145 (Общее уравнение поверхности второго порядка) 

𝐴𝑥2 + 𝐵𝑦2 + 𝐶𝑧2 + 2𝐷𝑥𝑦 + 2𝐸𝑥𝑧 + 2𝐹𝑦𝑧 + 𝐺𝑥 + 𝐻𝑦 + 𝐾𝑧 + 𝐿 = 0
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