
ДМ. Теормин №2
arslee.me

Boolean Algebra

Boolean function and Boolean formula
Булева функция: 𝑓 : {0, 1}𝑛 → {0, 1}

Булева формула описывает булеву функцию.

Состоит из переменных, констант 0/1 и операторов.

Number of n-ary Boolean functions
Существует 22𝑛

 функций от 𝑛 переменных.

Minterm and maxterm
• Минтерм - куб, содержащий все 𝑛 переменных.

• Макстерм - клоз, содержащий все 𝑛 переменных.

DNF and CNF
• ДНФ: дизъюнкция кубов: 𝑎𝑏 + 𝑐𝑑
• КНФ: конъюнкция клозов: (𝑎 + 𝑏)(𝑐 + 𝑑)

Negation normal form (NNF)
Формула находится в ННФ, если в ней используются

только операции ¬, ∨, ∧, при этом инверсия

находится только над литералами.

Пример:

• 𝑎 ∧ 𝑏 - не ННФ

• 𝑎 ∧ (𝑏 ⊕ 𝑐) - не ННФ

• 𝑎 ∧ (𝑏 ∨ 𝑐) - ННФ

Shannon expansion and cofactors
Пусть дано 𝑓(𝑥, 𝑦1, …, 𝑦𝑛).

Кофакторы 𝑓 по 𝑥 - функции вида:

• 𝑓0(𝑦1, …, 𝑦𝑛) = 𝑓(0, 𝑦1, …𝑦𝑛)
• 𝑓1(𝑦1, …, 𝑦𝑛) = 𝑓(1, 𝑦1, …𝑦𝑛)

Разложение Шеннона:

𝑓(𝑥, 𝑦1, …𝑦𝑛) = 𝑥 ⋅ 𝑓0(𝑦1, …, 𝑦𝑛) + 𝑥 ⋅ 𝑓1(𝑦1, …, 𝑦𝑛)

Algebraic normal form (ANF) / Zhegalkin

polynomial
АНФ (или полином Жегалкина) - представление

функции в виде XOR’а конъюнкций переменных и

константы 0/1.

Пример:

𝑓(𝑥, 𝑦, 𝑧) = 𝑥𝑦 ⊕ 𝑥𝑧 ⊕ 𝑦 ⊕ 1

По сути это многочлен над конечным полем 𝔽2:

• ⊕ - сумма

• ∧ - умножение

• 0, 1 - коэффициенты

Главная особенность: каждая Булева функция имеет

единственное представление в виде АНФ.

Methods for ANF construction
1. Метод неопределенных коэффициентов.

Для каждой строки таблицы истинности решаем

линейные уравнения по коэффициентам.

2. Метод треугольника.

Первый столбец - значения из таблицы

истинности, следующие столбцы - XOR левого и

левого нижнего ячеек. Верхняя строка

треугольника будет соответствовать включению

члена в полином:

3. Метод карт Карно.

Обходим все ячейки карты Карно в порядке

возрастания количества единиц (для 2

переменных это 00 → 10 → 01 → 11). Для

очередной ячейки:

• Если равна 0, идем к следующей;

• Если равна 1, записываем в полином член,

инвертируем все ячейки, где единицы

совпадают с единицами ячейки (нарпирмер,

если ячейка 010 равна 1, то флипаем

011, 110, 111 и саму 010).

4. Метод быстрого преобразования Фурье.

Делаем таблицу (𝑛 + 1) × 2𝑛. В каждой строке

делаем сначала блоки по 1 ячейке, потом по 2, по

4, и так до конца. Левые блоки (зеленого цвета)

вставляются вниз как есть, правые блоки XOR’ятся

с левыми и вставляются вниз. В полином

выписываются члены из нижней строки.

Короче сложно на словах кратко объяснить, так

что методом пристального взгляда на картинку:

https://arslee.me

Gray code
Код Грея - двоичная кодировка, где соседние

значения последовательности отличаются в одном

бите.

Пример: 000, 001, 011, 010, 110, 111, 101, 100

Literal, clause, and cube
• Литерал - переменная или его отрицание (𝑥, ¬𝑦)

• Куб - конъюнкция литералов (𝑥 ∧ 𝑦 ∧ 𝑧)

• Клоз - дизъююнкция литералов (𝑥 ∨ 𝑦 ∨ 𝑧)

Implicant, prime implicant, essential

prime implicant
• Импликанта - куб в ДНФ или клоз в КНФ

• Простая импликантиа - импликанта, которая не

может быть покрыта более общей импликантой.

• Ядровая (essential) простая импликанта - простая

импликанта, которая содержит минтерм, которая

не покрывается другой импликантой.

На примере карты Карно:

00 01 11 10

0

1

C
B

A 1 0

1 1 0 0

0 1

• Красный, зеленый, синий желтый - импликанты

• Красный, зеленый, синий - простые имликанты

• Красный, синий - ядровые простые импликанты

Karnaugh map (K-map) minimization
Карта Карно - представление таблицы истинности в

виде двумерной таблицы, упорядоченной по кодам

Грея (из-за чего соседние ячейки отличаются только

в одной переменной).

Карты Карно используются для ручной визуальной

минимизации ДНФ/КНФ.

Пусть мы хотим сделать минимальную ДНФ.

Собственно, мы переводим таблицу истинности в

карту Карно, группируем клетки с единицами в

прямоугольники длиной в степени двойки (если

нужно, то с wrap-around и наложением групп).

Потом выписываем термы по правилу:

• Если в каждой ячейке группы в соответсвующем

бите стоит единица - выписываем литерал.

• Если в каждой ячейке группы стоит нуль -

выписываем отрицание литерала.

• Если в бит различается в клетках - его не

выписываем.

Метод карт Карно позволяет быстро

минимизировать функцию с маленьким

количеством переменных. Чем больше переменных,

тем более сложный wraparound. А еще количество

клеток растет экспоненциально.

Ну крч бла бла бла, сами нормально объясните; в дз

миллион этих карт было.

Don’t-care conditions in K-maps
Don’t-Care условия - ситуации, где выходное

значение функции не важно.

Например, если мы точно знаем, что какой-то вход

никогда не будет подаваться в функцию, то это

Don’t-Care.

В карте Карно на месте Don’t-Care ставим крестик, и

используем их в группировке термов по

стандартным правилам.

Quine-McCluskey algorithm
Систематизированный табличный алгоритм

минимизации.

Алгоритм разбит на две части:

Часть 1: Генерация всех простых импликантов:

1. Выписываем все минтермы в бинарном формате

2. Группируем их по количеству единиц

3. Комбинируем пары минтермов, которые

отличаются в 1 бите и заменяем их на минус

4. Повторяем с шаги 2-4, пока есть пары

Часть 2: Выбор минимального множества простых

импликантов, покрывающего все минтермы.

1. Делаем таблицу простых импликантов

2. Находим среди них ядровые

3. Добиваем оставшиеся непокрытые минтермы

(например, методом Петрика)

Польза алгоритма:

• Его можно запрогать

• Гарантированно выдает минимальную формулу

• Удобен для произвольного количества

переменных

Petrick’s method for exact cover
Метод Петрика позволяет найти все комбинации

простых импликантов, которые покроют оставшиеся

минтермы.

1. Берем таблицу простых импликантов из Квайна-

Маккласки

2. Перебираем все комбинации импликантов, чтобы

покрыть каждый минтерм

3. Записываем импликанты в виде КНФ

4. Переводим в ДНФ

5. Среди всех ДНФ выбираем наименьший

То есть, если вкратце, мы тупо перебираем все

возможные покрытия и среди них находим

наименьшее.

Superposition (composition) and

functional closure
Суперпозиция (композиция) булевых функций -

функция, выраженная с помощью других функций

из некоторого множества. Например, функцию ∨

можно собрать из ∧ и ¬.

Функциональное замыкание – множество всех

возможных суперпозиций для некоторого

множества функций (базиса, получается?).

Functional completeness
Множество Булевых функций 𝐹 называется

функционально полным, если, если его замыкание [𝐹]
содержит все возможные Булевы функции.

То есть, любая функция может быть выражена,

используя только функции из 𝐹 .

Примеры 𝐹 :

• {¬, ∧, ∨}
• {NAND}
• {∧, ⊕, ⊤} (полином Жегалкина)

Post’s criterion and Post’s classes (T0, T1,

S, M, L)
Классы Поста:

• 𝑇0 - сохранаяющие 0: 𝑓(0, …, 0) = 0
• 𝑇1 - сохраняющие 1: 𝑓(1, …, 1) = 1
• 𝑆 - самодвойственные: 𝑓(𝑥1, …𝑥𝑛) =

𝑓(𝑥1, …, 𝑥 − 𝑛)
• 𝑀 - монотонные: 𝑥 < 𝑦 ⇒ 𝑓(𝑥) ≤ 𝑓(𝑦)
• 𝐿 - линейные: АНФ степени ≤ 1

Критетрий Поста: 𝐹 функционально полное ⇔ для

каждого класса Поста есть функция из 𝐹 , которая не

принадлежит этому классу.

Почему именно эти классы? Потому что

суперпозиция функций какого-то из данных классов

также принадлежит данному классу.

Из-за этого, если все функции из 𝐹 принадлежат

какому-то из данных классов, то [𝐹] содержит не все

Булевы функции.

Я думаю это необязательно для теормина, но мне

было интересно, почему ваще именно эти классы. В

слайде 164 описана интуиция данного критерия.

Sheffer stroke and Peirce arrow
• Штрих Шеффера: NAND, ↑, 𝑎 ⋅ 𝑏
• Стрелка Пирса: NOR, ↓, 𝑎 + 𝑏

Эти операторы функционально полные сами по

себе.

SAT

Boolean satisfiability (SAT)
Задача Булевой выполнимости (SAT): существует ли

такой набор значений переменных, чтобы формула

стала истинной?

Satisfiable, unsatisfiable, valid (tautology)
• Формула 𝜑 выполнима, если существует вход,

который выдает 1

• Формула 𝜑 невыполнима, если все входы выдают 0

• Формула 𝜑 валидна (тавтология), если все входы

выдают 1

SAT-VALID duality
Формула 𝜑 – тавтология ⇔ ¬𝜑 невыполнимо.

2-SAT
Частный случай SAT для КНФ, где каждый клоз

имеет ровно 2 литерала.

Суть в том, что мы переводим КНФ в конъюнкцию

импликаций, строим из них граф.

• Если в компоненте связности есть литерал и его

отрицание – UNSAT.

• Если в каждой компоненте такого нет – SAT.

Complexity classes P, NP, NP-hard, NP-

complete
Класс сложности P - класс задач, решаемых за

полиномиальное время. Например, сортировки или

кратчайшие пути.

Класс сложности NP - класс задач, в которых ответ

“да” может быть проверен за полином.

Задача X считается NP-сложной, если каждую задачу

из NP можно свести к X за полином.

Задача X считается NP-полной, если она

принадлежит NP и является NP-сложной.

Cook-Levin theorem
SAT – NP-полная задача.

Это значит, что любую задачу из NP можно свести к

SAT за полином.

Tseitin transformation
Алгоритм, позволяющий преобразовать формулу в

КНФ за линейное время путем введения

дополнительных переменных.

Суть такая:

1. Строим формулу в виде дерева, где вершины -

операторы, листья - переменные

2. Для каждого поддерева снизу вверх (кроме

листьев) вводим переменную (напр. 𝑡1 ↔ (𝑎 ∨ 𝑏),
𝑡2 ↔ (𝑐 ∧ 𝑑), 𝑡3 ↔ (𝑡1 → 𝑡2))

3. Конъюнктируем все 𝑡𝑖
4. Преобразовываем в КНФ

Resolution
Правило резолюции: если имеем клозы (𝐴 ∨ 𝑥) и

(𝐵 ∨ ¬𝑥), то можно вывести клозу (𝐴 ∨ 𝐵).

Идея в том, что если при повторении этого правила

мы получаем пустую клозу, то вся формула UNSAT.

Данное правило используется в программных

системах доказательств теорем.

Там еще есть понятия “ширина резолюции” и

“размер резолюции”, но я чет не особо понял нафига

они нужны. Ну, они разве что связаны с

асимптотикой резолюции всей формулы.

Unit propagation
Unit propagation - правило упрощения КНФ: если

КНФ содержит клозу из 1 литерала, то мы мы во всех

клозах убираем этот литерал (в итоге эта 1-клоза

удаляется). Отрицания этого литерала тоже удаляем.

В итоге, если мы сократили КНФ до ⊤, то SAT.

Pure literal elimination
Литерал 𝑙 называется чистым, если он встречается в

формуле, но ¬𝑙 нет.

Правило чистого литерала: если литерал 𝑙 – чистый,

то мы устанавливаем 𝑙 = 1 и удаляем все клозы,

содержащие 𝑙.

Таким образом, мы сокращаем формулу для SAT

солвера.

DPLL algorithm
DPLL - алгоритм для SAT.

Суть такая:

1. Сокращаем формулу: выполняем Unit Propagation

и Pure Literal Elimination

2. Если сократили формулу до ⊤, то SAT; если есть

пустуая клоза, то UNSAT.

3. Подставляем значение какой-нибудь переменной

и повторяем алгоритм.

Визуально это выглядит как дерево, где вершины -

подстановки переменных, а листья - ⊤ или ⊥. Если

нашли лист ⊤, то SAT. Если все листья ⊥, то UNSAT.

Conflict-Driven Clause Learning (CDCL)
CDCL - улучшенная версия DPLL.

Суть в том, что если мы пришли в ⊥ (“случился

конфликт”), то анализируем причину “конфликта” и

добавляем ограничительную клозу, которая

“запретит” некоторые пути (“чтобы не наступать на

те же грабли”).

Formal Logic

Propositional logic
Логика высказываний - простейший вид

формальной логики, которая работает с

высказываниями (propositions), которые могут быть

либо истинными, либо ложными.

Также известна как логика утверждений или логика

нулевого порядка.

Interpretation and valuation
Наверное Костя имел в виду “Interpretation and

evaluation”.

Интерпретация (или valuation) - функция, которая

маппит переменную из высказывания в значение:

𝜈 : 𝑉 → 𝔹

V - множество переменных. Например для

высказывания 𝐴 → (𝐵 ∨ 𝐶), 𝑉 = {𝐴, 𝐵, 𝐶}.

𝔹 = {0, 1}.

Evaluation - рекурсивная интерпретация целой

формулы. Valuation же, в свою очередь,

интерпретация лишь конкретных атомов.

Logical equivalence
Две формулы 𝜑 и 𝜓 называются логически

эквивалентными, если все значения истинности

совпадают во всех возможных интерпретациях:

𝜑 ≡ 𝜓 ⟺ ∀𝜈.⟦𝜑⟧𝜈 = ⟦𝜓⟧𝜈 ⟺ ⊧ 𝜑 ⟺ 𝜓

А еще есть теоремка: “𝜑 ≡ 𝜓 т. и т.т, когда 𝜑 ⇔ 𝜓 -

тавтология”

Semantic entailment
Множество формул Γ семантически подразумевает

формулу 𝜑, если каждая интерпретация,

выполняющая все формулы из Γ, также выполняет

формулу 𝜑:

Γ ⊧ 𝜑 ⟺ ∀𝜈.(∀𝜓 ∈ Γ.⟦𝜓⟧𝜈 = 1) → ⟦𝜑⟧𝜈 = 1

Разбор этой формулы:

1. Перебираем все интерпретации (по таблице

истинности, например).

2. Для каждого шага 1, перебираем каждую формулу

из Γ. Назовем ее 𝜓.

3. Для каждого шага 2, проверим, что

интерпретация 𝜓 равна 1.

4. Если в переборе 1-2 все истинно, то проверяем

интерпретацию 𝜑. Если и она равна 1, то ништяк,

Γ ⊧ 𝜑.

5. В обратную сторону тоже работает: если мы

каким-то образом знаем, что Γ ⊧ 𝜑, то шаги 1-4

точно сработают.

Semantic deduction theorem

Γ ∪ {𝜑} ⊧ 𝜓 ⟺ Γ ⊧ 𝜑 → 𝜓

Formal proof system (axioms and rules)
Формальная система доказательств состоит из:

1. Набора аксиом - формул, принимаемых как всегда

истинные

2. Набора правил вывода - правил, с помощью

которых мы можем вывести новую формулу из

уже существующих. Правило состоит из:

• Предпосылок (премизов)

• Вывода

Modus ponens and Modus tollens
Modus ponens: 𝐴 → 𝐵, 𝐴 ∴ 𝐵

Modus tollens: 𝐴 → 𝐵, ¬𝐵 ∴ ¬𝐴

Natural deduction
Естественная дедукция - метод доказательства, не

использующий аксиом. Вместо этого, есть правила

introduction и elimination - правила “соединения” и

“исключения” двух формул.

Например, если мы знаем, что 𝐴 ∧ 𝐵 истинно,

можно сделать вывод 𝐴 и вывод 𝐵. (так называемый

∧ elimination)

Или, например, если 𝐴, то можно сделать вывод 𝐴 ∨
𝐵. (так называемый ∨ introduction)

Fitch notation
Нотация Фитча - способ записи естественной

дедукции.

Пример:

• Нумеруем каждую строку

• Над чертой пишем премизы или предположения

• Под чертой пишем следствия

• Справа от выражений пишем правило вывода

Soundness and Completeness

(propositional)
Система доказательств корректна (sound), если

каждая выводимая формула семантически валидна.

Система доказательств полна (complete), если каждая

семантически валидная формула формула

выводима.

Естественная дедукция является одновременно и

sound, и complete.

Categorical propositions (A, E, I, O)
• A – Universal Affirmative:

∀𝑥.(𝑆(𝑥) → 𝑃(𝑥))

• E – Universal Negative

∀𝑥.(𝑆(𝑥) → ¬𝑃(𝑥))

• I – Particular Affirmative

∃𝑥.(𝑆(𝑥) → 𝑃(𝑥))

• O – Particular Negative

∃𝑥.(𝑆(𝑥) → ¬𝑃(𝑥))

Square of Opposition
Квадрат оппозиции - диаграмма, показывающая

логическое отношение между категориальными

препозициями:

Ну типа эта диаграмма показывает всякие выводы

категориальных пропозиций:

• A-E взаимо противоречивы

• I-O могут быть истинны одновременно

• A-O, E-I не могут быть истинны одновременно

• Если A истинно, то I тоже

• Если E истинно, то O тоже

Existential import
Категориальная пропозиция “S is P” имеет existential

import, если оно подразумевает существование хотя

бы одного объекта из множества S.

В традиционной логике подразумевается, что все

пропозиции имеют existential import.

В современной логике рассматривается

существование объекта. То есть, если объекта не

существует, то вакуумная истина.

Рассмотрим высказывание: “Все единороги

волшебны”.

В традиционной логике это высказывание ложно,

поскольку оно подразумевает существование

единорогов.

В современной логике это высказывание вакуумно

истинно. Типа единорогов не существует, значит из

этого можно сделать вообще любой вывод о

единорогах (левая часть импликации ложна, значит

правая часть неважна, так как вся импликация уже

истинна).

Syllogism (Mood and Figure)
Категориальный силлогизм - форма мышления с

тремя категориальными высказываниями:

• Мажор премиз - предикат (“все люди смертны”)

• Минор премиз - субъект (“Сократ человек”)

• Вывод (“Сократ смертный”)

Еще есть промежуточный терм, который логически

связывает мажор и минор премизы (“человек”).

Mood (модус) описывает типы премизов (A-E-I-O).

Figure (фигура) как бы описывает логические

переходы: положение промежуточного терма между

премизами.

Venn diagrams for syllogistic validity
Ну типа мы можем визуально показать истинность

каких-то дедукций (силлогизмов) с помощью

диаграмм Венна.

Вот картинка, может по ней будет понятно (я не

понял):

First-order logic
Логика первого порядка (логика предикатов) –

расширение пропозиционной логики. Добавляются:

• Предикаты (маппинг из объекта в 0/1)

• Кванторы (∀, ∃)

• Термы (выражения, описывающие объекты):

переменные, константы, функции

Идея в том, что в логике нулевого порядка мы

рассматриваем высказывания. В логике первого

порядка мы также учитываем модель, внутри

которой мы делаем какие-то утверждения.

Ну то есть в FOL какое-то выражение может быть

истинно в одной модели, при этом быть ложным в

другой. В нулевой логике мы рассматриваем

высказывания без учета модели. Ну крч понятно да.

	Boolean Algebra
	Boolean function and Boolean formula
	Number of n-ary Boolean functions
	Minterm and maxterm
	DNF and CNF
	Negation normal form (NNF)
	Shannon expansion and cofactors
	Algebraic normal form (ANF) / Zhegalkin polynomial
	Methods for ANF construction
	Gray code
	Literal, clause, and cube
	Implicant, prime implicant, essential prime implicant
	Karnaugh map (K-map) minimization
	Don't-care conditions in K-maps
	Quine-McCluskey algorithm
	Petrick's method for exact cover
	Superposition (composition) and functional closure
	Functional completeness
	Post's criterion and Post's classes (T0, T1, S, M, L)
	Sheffer stroke and Peirce arrow

	SAT
	Boolean satisfiability (SAT)
	Satisfiable, unsatisfiable, valid (tautology)
	SAT-VALID duality
	2-SAT
	Complexity classes P, NP, NP-hard, NP-complete
	Cook-Levin theorem
	Tseitin transformation
	Resolution
	Unit propagation
	Pure literal elimination
	DPLL algorithm
	Conflict-Driven Clause Learning (CDCL)

	Formal Logic
	Propositional logic
	Interpretation and valuation
	Logical equivalence
	Semantic entailment
	Semantic deduction theorem
	Formal proof system (axioms and rules)
	Modus ponens and Modus tollens
	Natural deduction
	Fitch notation
	Soundness and Completeness (propositional)
	Categorical propositions (A, E, I, O)
	Square of Opposition
	Existential import
	Syllogism (Mood and Figure)
	Venn diagrams for syllogistic validity
	First-order logic

